АКАЛЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 6

МАЙ, 1970

ВЫПУСК 2

СПЕКТРАЛЬНО-ПЕРЕМЕННАЯ ЗВЕЗДА CU VIR И МОДЕЛЬ НАКЛОННОГО РОТАТОРА

В. Л. ХОХЛОВА, Т. А. РЯБЧИКОВА Поступила 15 впреля 1969 Пересмотрена 20 октября 1969

Изучено изменение интентивностей и контуров линий в спектре переменной Ар-звезды CU Vir (HD 124224). Показано, что наблюдаемое изменение интенсавностей линий Si II и He I не связано с изменением условий возбуждения. Различие полуширии линий разных элементов, изменение лучевых скоростей и эквивалентных ширин могут быть объяснены моделью наклонного ретатора, предложенной Дейчем для магнитно-переменных и спектрально-переменных Ар-звезд. Оденен угол между лучом зрения и осью вращения $i = 47^{\circ}$ и угол между осью вращения и магнитной осью $p \approx 20^{\circ}$.

Предполагается, что линии Si II образуются преимущественно в областях, расположенных вблизи магнитных полюсов, а линии Hel — в области магнитного экватора. Области с концентрацией Si II являются более устойчивыми, чем области с концентрацией He I.

Звезда CU Vir (HD 124224) В8р имеет наиболее короткий из всех известных периодов для Ар-звезд — $P = 0^{d}52$. Счектр этой звезды изучался Дейчем [1, 2] и Петерсоном [3]. Согласно Дейчу, $P = 0.^{d}52$ согласуется с определенной им по ширине линий экваториальной скоростью вращения, если принять, что звезда видна почти с экватора и $R_* = 2R_{\odot}$. В спектре, кроме бальмеровских линий водорода, были обнаружены сильно меняющие интенсивность линии Si II и He I, линия λ 4481 Mg II и ряд других, в то время не отождествленных линий. Линии сильно размыты нращением, однако Дейч [2] отметил систематическое изменение лучевых скоростей по группе линий Si II от — 40 :: m/cex до + 40 кm/cek, причем лучевая скорость равна нулю в момент максимума эквивалентной ширины линий $W_{SI II}$. По линиям водорода и λ 4481 Mg II Дейч получил разброс лучевых скоростей $\pm 40 \ \kappa m/cek$ без какого-либо систематического хода. Наблюдения Дейча [2] и Петерсона [3] показали, что в фазе максимума $W_{SI II}$ значения W_{HeI} имеют минимум и, наоборот, в момент минимума $W_{SI II}$ значения W_{HeI} максимальны.

Дейч отмечает, что перед максимумом интенсивности линии Hel смещены на 4 -- 5 Å в фиолетовую сторону [1]. Петерсон также отмечает возможное смещение линии в фиолетовую сторону перед максимумом и в красную — после максимума, не приводя количественных измерений.

Фотометрические кривые блеска CU Vir получены Харди в 1955 г. [4] и Абуладзе в 1964, 1965 и 1966 гг. [5]. Фотометрический период равен периоду спектральной переменности и максимум блеска совпадает с минимумом интенсивности линий He I.

Магнитное поле CU Vir не может быть измерено из-за большой ширины линий, однако сходство других характеристик (аномальная интенсивность линий Si II, спектральная переменность и переменность блеска) с характеристиками типичных магнитно-переменных и спектрально-переменных Ар-звезд позволяет предполагать наличие на CU Vir магнитного поля.

Упомянутые выше спектральные исследования CU Vir [1-3] производились со сравнительно небольшой дисперсией. Более детальное изучение спектров CU Vir с высокой дисперсией представляет интерес в связи с тем, что надежно определенные контуры и допплеровские смещения линий в спектре этой звезды позволяют проверить и уточнить предложенное Стиббсом [13] и Дейчем [1, 2] представление об Ар-звездах как о "наклонных ротаторах" с неоднородным распределением элементов и, может быть, физических характеристик по поверхности звезды. Крайне интересно было бы также выяснить вопрос о том, насколько устойчивы такие неоднородности и не происходит ли каких-либо изменений их положения и размеров со временем. Следует ожидать, что у звезды с более быстрым вращением такие изменения могут возникнуть и быть обнаружены скорее, чем у звезды с медленным вращением.

Спектры CU Vir были получены одним из авторов (В. Л. Хохловой) на Крымской астрофизической обсерватории в 1967 г. на дифракционном спектрографе 125 см рефлектора с дисперсией 15 Å/мм на пластинках ОаО и в 1968 г. на спектрографе куде 2.6-метрового рефлектора ЭТШ с дисперсией 4 Å/мм на пленке А-500. В 1968 г. было также получено 2 спектра звезды сравнения « Del B9 V. В табл. 1 приведены даты наблюдений, фаза и эквивалентные ширины линии Si II λ 4128, 4130 Å. Для вычисления фазы использовался фотометрический период Абуладзе [5] P = 0.4520679, который отличается от периода спектральных изменений, определенного Петерсоном [3], только в пятом знаке после запятой.

Дата	UT . W4128 - W4130		W4128 + W4130(Å)	Дата	UT	= W4128 + W4130(Å)		
1967 г.			27 - 11	1968 г.	-			
16 мая	19 ^h 26 ^m	0.00	0.32	10 яюня	20 ^h 05 ^m	0.97	0.35	
11	20 06	0.05	0.43	11 июяя	18 25	0.76	0.63	
99	20 15	0.11	0.30	11	19 05	0.81	0.66	
	21 36	0.17	0.43		19 40	0.86	0.40	
	22 21	0.23	0.57	11	20 15	0.90	0.93	
45	22 56	0.28	0.74		22 07	0.05	0.60	
19 мая	19 42	0.87	0.61	19 июня	18 30	0.18	0.64	
22 мая	19 30	0.53	1.02	37	19 00	0.17	0.64	
	20 50	0.64	0.60	π	19 42	0.22	0.71	
28 мая	19 00	0.55	0.76		20 20	0.28	0.86	
30 яювя	19 50	0.46	1.07		21 10	0.34	1.16	

В спектре CU Vir в интервале ід 3850 — 4650 Å зарегистрированы, помимо водородных, 67 линий. Линия считалась реальной, если присутствовала на 3-х или более спектрограммах, включая спектр звезды сравнения « Del. В табл. 2 приведен список линий в спектре CU Vir с ссылкой на источник для отождествления.

Изменение интенсивности линий. На рис. 1 представлены изменения W_λ некоторых линий Si II и He I с фазой по наблюдениям Петерсона [3] и нашим.

На рис. 2 представлена зависимость W_{λ} линий других влементов от фазы по нашим наблюдениям 1968 г. Следует заметить, что из-за большой ширины и малой глубины линий ошибка в определении W_{λ} велика, и линии с $W_{\lambda} < 0.1$ А трудно поддаются выявлению.

В согласии с [2, 3] линии Si II и He I значительно меняются в противофазе друг с другом. Рассмотрим, могут ли какие-либо изменения температуры и давления в атмосфере звезды привести к наблюдаемым изменениям W_{λ} . Зависимость эквивалентной ширины линий Si II и He I от эффективной температуры звезды и силы тяжести вычислена по теоретическим моделям в работе Михаласа [9] и Михаласа и Хеншоу [10]. Вблизи Т_{вфф} = 14000°, соответствующей (B-V) = -0.13 для CU Vir, W_{λ} линии He I_{λ} 4121 сильно зависит от температуры и слабо

Таблица 1

-			and the second se	Таблица 2		
Na	1 1 22400	2	Отождествлевие	Источняк		
n/n	л вамер.	A Aloopar,	элемент, № мультиплета			
1	2	3	4	5		
1	3853.7	3853.664	Si II (1)	8		
2	3856.2	3856.017	Si II (1)	8		
3	3862.6	3862.595	Si II (1)	8		
4	3865.9	3865.59	Cr II (167)	7		
5	3989.0		Н.			
6	3905	3905.527 3905.64	Si I (3) + Cr II (167)	7		
7	3933.6	3933.664	Call (1)	7		
8	3938.8	3938.969	Fe II (190)	67		
9	3949.3	A BAX-		0,7		
10	3954.3	3954.296 3954.507	Si II (7.07)	8		
11	3970	200	Hs	1. S.		
12	3991.0	3991.77	Si II (20)	8		
13	3996.8	3996.36 3998.0	Fe II (190) Si II (20)	7		
14	4001.7	4002.073 4002.549	Fe II (29) Fe II (190)	6,7		
15	4015.2	1.		2007		
16	4026.4	4026.189	He I (18)	7		
17	4037.3	4037.332 4037.897	Gd II (49)	7		
18	4056.7	4056.993	Si II (7.18)	8		
19	4071.5	Service Services		Ŭ		
20	}4075.45 (4076.78	4075.45 4076.78	Si II (3.01) Si II (3.01)	8		
21.	4084.4					
22	4086.8	4086.72	La II (10)	7		
23	4102	125	Ha	and the particular		
24	4121	4120.812	He I (16)	7		
25	4128	4128.067	Si II (3)	8		
26	4131	4130.893	St II (3)	8		
27	4137.6	4137.646		0.51 Yes		
28	4142.4		and martine and			
29	4149.7	4149.22	Zr II (51)	6.7		
30	4172.7	4173.450	Fe II (27)	7		
31	4178.4	4178.855	Fe II (28)	6.7		

СПЕКТРАЛЬНО-ПЕРЕМЕННАЯ ЗВЕЗДА СU VIR

			I UUMULU Z (NPOZOMKERUE)				
1	2 .	3	4	5			
32	4184.2	4183.345	Si II (7.26)	8			
33	4187.0	4187.137	Si II (7.17)	8			
34	4191	4190.724	Si II (7.26)	8			
35	4198.1	4198.133	Si II (7.26)	8			
36	4201	4200.657 4200.898	Si II (7.06)	.8			
37	4204.8	4205.05	Eull (1)	-6,7			
38	4232.8	4232.864 4233.167	Si II (7.01) Fe II (27)	87			
39	4293.8	4294.101	Ti II (20)	6,7			
40	4304.3	4303.57	Nd II (10)	7			
41	4314.3	4314.289 4314.979	Fe II (32) Ti II (41)	7			
42	4318.8		1 - 1 - 1				
43	4325.4			-			
-44	4334.2						
-45	4340		Η _ĭ				
46	4377.0	4376.957	Si II (7.16)	8			
47	4385.3	4385.381	Fe II (27)	6,7			
48	4389.0	4387.928	He I (51)	7			
49	4395.1	4395.031	Ti II (19)	6,7			
50	4468.0	4468.49	Ti II (31)	7			
.51	4471.6	4471.477	Hoł (14)	7			
52	4475.3		1. 1. 1. 1. 1.	1 2			
53	4481.3	4481.129	Mg II (4)	7			
54	4488.2	4489.185	Fe II (37)	7			
55	4493.2	4491.401	Fe II (37)	7			
56	4499.2	1.000					
57	\$4504.4	Sec. Caller		1			
:58	4506.5		A A	1			
59	4520.9	4520.225	Fe II (37)	7			
·60	4534.7	4533.966 4534.166	Ti II (50) F⊕ II (37)	7 6,7			
61	4540.35	1 × 1	A state of the				
-62	4549.4	4549.214 4549.467	Fe II (186) Fe II (37)	7 6,7			
-63	4553.6	4354.03 4555.890	Ba II (1) Fe II (28)	777			
64	4557.7	4558.659	Cr II (44)	6,7			

			T GONNIAU & (npogonmente,
1	2	3	4 •	5
65	4583.7	4583.829	Fe II (37)	6,7
66	4610.2	CONTRACT OF		14 13 1
67	{4621.0	4621.48 4621.721	Si II (7.05)	8.
68	4628.0	4629.336	Fe II (28)	7
69	4665.2	2.0		
70	4669.5	19 mg		
71	4673.3	4673.273	Si II (7.15)	8
71	4673.3	4673.273	Si II (7.15)	8

Рис. 1. Изменение вквивалентной ширины линий Sill и Helc фазой в спектре CU Vir. Х-наблюдения 1964 г. [3], • - наблюдения 1967 г. и []-наблюдения 1968 г.

зависит от плотности (lg g). W , линий Sill в этой области температур слабо зависит как от температуры, так и от lg g. Эти вычисленные зависимости приведены на графике рис. За и 36, причем при расчетах W₂ Sill A4130.9 принималось, что содержание Si в звезде Nsie в 100 раз превышает содержание [Si на Солнце Nsio. Аналогичные зависимости следуют и из вычислений де Ягера [11], а также согласуются с эмпирическими зависимостями, известными из работ по спектральной классификации. Согласно рис. За, наблюдаемые изменения W, для линий Hel в 4 раза потребовали бы изменения температуры на 3000 °К. При этом, согласно рис. Зб, эквивалентная ширина линий Sill практически не должна измениться. На самом деле, как видно из рис. 1. W, 4130 также меняется более чем в 3 раза. Другое противоречие заключается в том, что изменение Т_{эфф} на 1000° повлекло бы за собой, согласно [12], изменение цвета (B-V) на 0^{т08}. Фотометрические наблюдения [4, 5] показывают, что изменение цвета не превосходит 0^m02. Таким образом, изменение температуры или плотности в атмосфере этой звезды не может быть причиной изменения вквивалентных ширин линий Hel и Sill.

Рис. 2. Изменение эквивалевтвой ширивы линий Mg II, Ti II, Ca II по наблюдениям 1968 г.

Модель наклонного ротатора, ширины и допплеровские смещения линий. Согласно модели наклонного ротатора, рассмотренной в работах Стиббса [13], Дейча [2] и Бём-Витензе [14, 15] для спектрально- и магнитно-переменных Ар-звезд, на звезде имеются различные области с преимущественной концентрацией различных элементов и, вследствие вращения звезды, эти области попеременно бывают обращены к наблюдателю. Бём-Витензе провела расчеты, предположив, что звезда имеет цилиндрическую симметрию относительно магнитной оси, которая составляет с осью вращения угол β. Одни элементы концентрируются у магнитного полюса, дру-

В. Л. ХОХЛОВА, Т. А РЯБЧИКОВА

гие — у магнитного экватора. Линии элементов, концентрирующихся у магнитных полюсов, должны быть более узкими и показывать периодическое изменение лучевых скоростей по мере того, как полярная область описывает круг с центром в полюсе вращения. Линии эле-

Рис. 3. Зависимость эквивалентных ширин линий λ 4121 He I и λ 4130 Si II от Тафф и lg g по вычислениям [9, 10].

ментов, рассредоточенных вдоль экваториальной области, должны быть более широкими, и лучевая скорость должна меняться сложным обра-

зом. Линии, образующиеся равномерно на всей поверхности звезды, будут иметь обычные расширевные вращением профили.

Сравнительно подробно изучить полуширины и допплеровские смещения линий в спектре CU Vir нам удалось лишь по спектрам 1968 г. с дисперсией 4 Å/мм. Дело в том, что, несмотря на большую ширину линий, при умеренной дисперсии трудно надежно выделить линии на фоне зерна фотопластинки из-за их малой глубины и повтому для усреднения зерна требуется достаточно широкая щель фотометра. При обработке пластинок у нас была использована щель, соответствующая 0.35 Å.

В табл. З приведены полуширины тех линий, контуры которых могли быть определены надежно. Прежде всего обращает на себя внимание тот факт, что все линии Si II в спектре CU Vir имеют систематически меньшую полуширину, чем линии других элементов. В спектре нормальной звезды « Del линии всех элементов имеют с точностью до ошибок измерений одинаковую полуширину. На рис. 4а

Рис. 4. а. Изменение лучевых скоростей с фазой для лений Si II (усредневы изморения по пяти линиям), 6. λ 4481 Mg II и λ 4293,8 Ті II по наблюдениям 1968 г.

приведены усредненные значения лучевых скоростей, определенные по линиям Sill 10. 4128-4130, 4328, 4021, 4191, 3991 и 3954,3. Нуле-

			AL SH					1 . T . Mar.		7	Габлица З
Элемент	Si II										
λ	3954	3991	3998	4075	4128 4230	4183	4187	4191	4201	4232.8	4377
CU Vir a Del	2.4 <u>+</u> 0.3	3.0 <u>+</u> 0.4	2.4±0.4	2.5 <u>+</u> 0.3	2.7 <u>+</u> 0.2 4.0	2.2 <u>+</u> 0.1	2.3±0.4	2.3 <u>+</u> 0.1	2.3 <u>+</u> 0.1	2.7 <u>+</u> 0.3	2.7 <u>+</u> 0.3

Элемент	Mg II	Cr II	Ti II	Call	He I
λ	4481	4071	4293.6	3933	4026
CU Vir	3.7±0.6	3.6±0.3	3.0 ± 0.1	3.0 ± 0.4	4.7 <u>+</u> 0.7
a Del	3.9		3.3	3.8	3.6

В. Л. ХОХЛОВА, Т. А. РЯБЧИКОВА

вая лучевая скорость соответствует фазам максимальной и минимальной интенсивностей линий Sill. На рис. 46 приведены лучевые скорости по линиям Mg II и Till.

Аинии Hel очень широки (рис. 5), иногда намечается разделение на отдельные компоненты. Аналогичная картина наблюдалась и на спектрах 1967 г. при D = 15 Å/мм. Большая полуширина линий Hel может быть частично отнесена за счет появления дисперсионных крыльев, как это хорошо видно у контуров линии Hel в спектре a Del (рис. 5). Вероятно, с этим обстоятельством и связана слишком большая величина смещения линий Hel (до 5Å), оцененная Дейчем по спектрам с небольшой дисперсией. Смещение ядра линий Hel не имеет систематического характера и не превосходит величины, определяемой экваториальной скоростью вращения CU Vir, то есть ± 2.5 Å.

Исходя из наблюдаемых полуширин линий, можно предположить, что в CU Vir Si II концентрируется в основном вблизи магнитных полюсов звезды, а гелий – вблизи магнитного экватора. Предположим также, что Mg II распределен более или менее равномерно по поверхности звезды. В этом случае можно попытаться оценить минимальное значение угла *i* между лучом зрения и осью вращения по полуширине линии Mg II, а также угла β между магнитной осью и осью вращения по амплитуде лучевых скоростей и полуширине линий Si II следующим образом: экваториальная скорость $V_{sxs} = (2\pi/P) R_* =$ $= 210 \ \kappa m/cm$ при $R_* = 2R_{\odot}$. Соответствующая втой скорости полуширина линии $\Delta \lambda_{1/2} = 2 \times 4481 \times (210 \ \kappa m/cek)/c \cdot 0.8 = 5 \ Å$. Множитель 0.8 появляется из-за того, что скорость, определяемая по полуширине профиля линии в спектре расширенной вращением звезды, составляет 0.8 от V_{sxs} , как следует из расчетов [16].

Наблюдаемая полуширина линии λ 4481 Mg II $\Delta\lambda_{1/2} = 3.7 \pm 0.6$ Å, откуда $\sin i = (3.7 \pm 0.6)/5 = 0.74 \pm 0.12$, а $i = 47 \pm 13^{\circ}$. Очевидно, что если линия Mg II образуется не на всей поверхности звезды, то в действительности величина угла *i* больше. "Полярная" область с повышенной концентрацией Si II описывает при вращении звезды малый круг. Проекция скорости "полюса" на луч зрения равна $V_r = V_{_{\rm SKB}} \sin i \sin \beta$. Считая, что наблюдаемое по линиям Si II смещение \pm 50 км/сек характеризует лучевую скорость полярных областей, получим:

$$\sin \beta = \frac{V_r}{V_{\text{skB}} \sin i} = \frac{50 \text{ km/cek}}{210 \text{ km/cek} \cdot 0.74} = 0.32.$$

то есть $\beta = 19^{\circ}$.

Рис. 5. Контуры линий λ 4128 и λ 4130 Si II и λ 4026 He I в спектре CU Vir в α Del. Другой способ оценки угла β учитывает полуширину линий Si II... Будем считать, что диаметрально расположенные по "магнитному" меридиану края области Si II описывают малые круги с проекцией скорости на луч зрения, равной 50 ± 85 км/сек (85 км/сек соответствует половинной полуширине линий Si II 0.5 $\Delta \lambda_{1/2} = 1.25$ (Å). Снова используя соотношение sin $\beta = V_r / V_{3KB} \cdot \sin i$, получаем $\beta_1 = 61^\circ$ и $\beta_2 = -13^\circ$, то есть в меридиональном направлении область концентрации Si II имеет протяженность 61° в одну сторону от полюса вращения и 13° в другую с центром, смещенным на 24° от оси вращения.

Таким образом, по приведенным оценкам угол между "магнитной" осью и осью вращения у CU Vir составляет величину $\beta \approx 19 + 24^{\circ}$.

Наблюдения спектров CU Vir в течение ряда лет позволили бы заметить изменения в положении и размерах "пятен" на поверхности знезды, если они имеют место. Такие изменения должны проявиться в расхождении кривых для разных лет на рис. 1. Имеющаяся неопределенность периода в пятом знаке может привести к ошибке в фазе на 0.05 Р за интервал времени, равный 7 годам. Кривые W_{2,5111} на рис. 1 хорошо согласуются по форме и амплитуде, хотя наблюдения с интервалом времени 4 года показывают сдвиг по фазе, чуть превышающий 0.05 Р. Кривые для He I показывают заметные расхождения по амплитуде и форме. Частично это может быть объяснено неопределенностью в проведении контуров линий He I из-за их сложной формы. Возможно также, что экваториальные области с повышенной концентрацией в них He I являются менее устойчивыми.

В заключение авторы приносят искревнюю благодарность дирекции и сотрудникам отдела физики эвезд и туманностей КрАО АН СССР за предоставленную возможность и помощь при получении спектров на телескопах обсерватории.

Астрономический совет АН СССР

SPECTRUM VARIABLE STAR CU VIR AND OBLIQUE ROTATOR MODEL

V. L. KHOKHLOVA, T. V. RIABCHIKOVA

The variations of line intensities and profiles in the spectrum variable Ap-star CU Vir (HD 124224) are studied using high dispersion spectrograms. The variation in intensities of Si II and He I lines of this star was shown to be disconnected with the change of exitation,. temperature or density. A difference in half widths for different elements, variations of radial velocities and W_{1} are consistent with the oblique rotator model proposed by Deutsch for magnetic-variable and spectrumvariable Ap stars. It is supposed that Si II lines are predominantly formed near the magnetic poles and He I lines near the magnetic equator. The angles $i = 47^{\circ}$ and $\beta = 20^{\circ}$ are estimated. The Si II regions near the poles are probably more stable than He I regions near the equator zone.

ЛИТЕРАТУРА

- 1. A. Deutsch, Ap. J., 116, 536, 1952.
- 2. A. Deutsch, Vistas in Astronomy, 2, 1956, p. 1421.
- 3. B. A. Peterson, Ap. J., 145, No. 3, 1966.
- 4. R. Hardie, Ap. J., 127, 620, 1954.
- 5. О. П. Абуладзе, Бюлл. Абастуман. астрофив. обс., 36, 43, 1968.
- 6. M. Jaschek, Z. Garcia, Z. Astrophys., 64, Heft 3, 1966.
- 7. Ch. E. Moor, A Multiplet Table of Astrophysical Interest, Contr. Princeton Univ. Obs., No. 20, 1945.
- 8. Ch. E. Moor, Selected Tables of Atomic Spectra, NSRDS-NBS 3, Sect. 1, Washington, 1966.
- 9. D. Michalas, Ap. J., Suppl. ser., 9, 321, 1965.
- 10. D. Michalas, J. Henshow, Ap. J., 144, No. 1, 1966.
- 11. C. de Jager, BAN, Suppl. ser., 2, No. 4, 1967.
- D. L. Harris III, Basic Astronomical Data, ed. by K. A. Strand, Chicago, 1963, p. 268.
- 13. D. W. N. Stibbs, M. N., 110, 395, 1950.
- 14. E. Böhm-Vitense, Z. Astrophys., 64, 326, 1966.
- 15. E. Böhm-Vitense, Modern Astrophysics, Otto Struve memorial, 1967, p. 97.
- 16. A. Anderhill, BAN, 19, No. 6, 1968.