АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 5

НОЯБРЬ, 1969

ВЫПУСК 4

краткие сообщения

ПОЛИТРОПНЫЕ МОДЕЛИ В РЕЛЯТИВИСТСКОЙ ОБОБЩЕННОЙ ТЕОРИИ ГРАВИТАЦИИ

В нерелятивистском приближении обобщенной теории политропные модели рассматривались в [1]. Ниже мы приводим некоторые результаты, полученные для политропных моделей с уравнением состояния

$$P = A \rho^{1+1/n} \quad (n \neq \infty) \tag{1}$$

в релятивистской обобщенной теории гравитации. Последняя составляет содержание работ [2] и [3], где сформулирована внутренняя задача для статической сферически-симметрической конфигурации и исследована модель несжимаемой жидкости (n=0). Мы пользуемся обозначениями [3] и во многих вопросах ссылки на эту работу опускаем.

Величина A в (1) называется политропной температурой модели. Мы оставляем вне рассмотрения вопрос о выборе этой температуры, замечая, что модель со значением $A=A_*$ переходит в другую, с $A=\alpha A_*$ (но с тем же индексом n), при следующем преобразовании подобия:

$$s \rightarrow \alpha s_*, \quad \rho \rightarrow \alpha^{-n} \rho_*, \quad P \rightarrow \alpha^{-n} P_*, \quad E \rightarrow E_*, \quad f \rightarrow f_*,$$
 (2)

причем

$$w = w_*, \quad M = \alpha^{n/2} M_*, \quad R = \alpha^{n/2} R_*, \quad P_0 = \alpha^{-n} P_{0*}.$$
 (3)

Повтому численное интегрирование проводилось для значения $A_* = 1$, а на рис. 1 и в табл. 1 представлены интегральные параметры

$$p_0 = P_0 A^n$$
, $M_* = M A^{-n/2}$, $R_* = R A^{-n/2}$, $w = \frac{!M_*}{R_*} = \frac{M}{R}$ (4)

для наиболее важных политроп с индексами n=1.5 и 3. Для сравнения на рис. 1 приведена зависимость $M_*(p_0)$ для несжимаемой жид-кости (p=1).

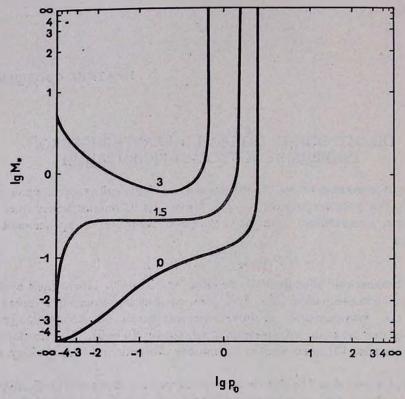


Рис. 1. Зависимость массы M_{\bullet} от центрального давления p_0 (см. (4)) политропных моделей с индексами, отмеченными на кривых.

В области малых значений p_0 (малые w) справедливы как теория Эйнштейна, так и (при еще меньших p_0) соответствующие нерелятивистские приближения. Область $p_0 \sim 1$ (большие w) принадлежит гравитарам. Максимально допустимые значения центрального "давления" p_0 равны 2.070 (n=0), 1.372 (n=1.5) и 0.734 (n=3). Представленное на рис. 1 явление насыщения центрального давления является результатом наложения эффектов искривления пространства и ослаб-

ления гравитационного взаимодействия, связанных с большими концентрациями масс.

Таблица 1 НАИБОЛЕЕ ВАЖНЫЕ ПАРАМЕТРЫ ПОЛИТРОПНЫХ МОДЕЛЕЙ В РЕЛЯТИВИСТСКОЙ ОБОБЩЕННОЙ ТЕОРИИ ГРАВИТАЦИИ

n=1.5				n=3			
w	Po	M _*	R _*	พ	Po	M _*	R _*
0.652	1.372	1.12.104	1.71.104	0.571	0.734	104.9	1.83-102
.631	1.372	2.79.103	4.43-103	0.568	0.734	85.16	1.49-102
.610	1.372	6.97-102	1.14-103	0.565	0.734	64.41	1.14.102
.583	1.372	87.59	1.50-102	0.562	0.734	52.28	93.01
.564	1.372	21.81	38.66	0.553	0.734	26.19	47.31
.555	1.370	10.90	19.64	0.546	0.734	13.16	24.10
.546	1.368	5.458	9.998	0.541	0.734	6.691	12.37
.535	1.363	2.733	5.106	0.515	0.729	3.285	6.378
.521	1.328	1.380	2.652	0.473	0.686	1.677	3.548
.490	1.212	0.715	1.459	0.356	0.555	0.890	2.503
.416	0.880	0.407	0.978	0.125	0.205	0.677	5.416
.264	0.140	0.321	1.217	$7.76 \cdot 10^{-2}$	5.62-10-4	1.963	25.29
.220	$4.61 \cdot 10^{-2}$	0.332	1.511	$5.62 \cdot 10^{-2}$	3.64.10	2.770	49.30
.155	$7.64 \cdot 10^{-3}$	0.324	2.088	$3.06 \cdot 10^{-2}$	1.19.10	3.619	1.18-102
.037	$7.18 \cdot 10^{-5}$	0.149	4.010	$1.75 \cdot 10^{-2}$	8.50-10	3.911	2.23.102
.012	4.48.10	6.78-10-2	5.473	$9.00 \cdot 10^{-3}$	5.22.10	4.126	4.58-102
.003	$1.37 \cdot 10^{-7}$	2.35.10-2	7.833	$2.10 \cdot 10^{-3}$	1.30-10	4.216	2.04-103

Величина

$$q = \frac{P}{\rho},\tag{5}$$

называемая локальным параметром релятивизма, в центре модели равна

$$q_0 = p_0^{n+1}. (6)$$

Близость максимально возможных значений q_0 к единице (см. табл. 2) в какой-то мере гармонирует с фундаментальным выводом статистической физики об ограниченности $P/\rho < 1$.

Ввиду того, что локальное условие $q_0 \sim 1$ неизбежности релятивистского рассмотрения известным образом (табл. 1) перекрывается с интегральным условием относительно w ($w \gtrsim 0.5$), то в обобщенной

теории применимость того или иного приближения однозначно определяется степенью компактности w=M/R конфигурации.

Таблица 2

МАКСИМАЛЬНО ВОЗМОЖНЫЕ ЭНАЧЕНИЯ ПАРАМЕТРА $q_0 = P_0/p_0$ ДЛЯ ПОЛИТРОПНЫХ МОДЕЛЕЙ ПО ОБОБШЕННОЙ ТЕОРИИ ГРАВИТАЦИИ

	me	x q ₀		
n	нерелятивист- ская теория	реаятивистская теория		
0	1.51	2.070		
1.5	1.18	1.135		
3	1.02	0.925		

Мы не приводим значения гравитационного дефекта массы — наглядное представление о порядке величины можно получить на примере несжимаемой жидкости [3], а также поведения функций $\lambda(r)$ и $\nu(r)$ внутри распределения масс. Значения последних на поверхности даются внешним решением Гекмана, а в центре конфигурации $\lambda(0) = -\infty$, $\nu(0) = \nu(R) - 2(n+1) \ln(q_0 + 1)$.

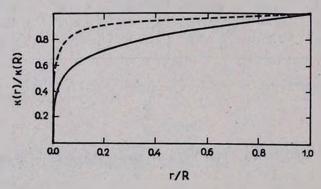


Рис. 2. Поведение гравитационного скаляра k(r) внутри гравитара.

Пунктирная линия на рис. 2 описывает качественное изменение гравитационного скаляра k(r) внутри конфигураций. При малых w она примыкает к левой и верхней сторонам рамки, а с увеличением w асимптотически приближается к жирной линии. Такие предельные поведения при $w \to \infty$ характерны и для остальных функций, что соответствует тому обстоятельству, что гравитары суть подобные друг

другу модели. Более того, указанные асимптотические поведения слабо зависят от индекса n политропы. Изображенная на рис. 2 функция относится к значению n=1.5; соответствующие функции для n=0 и n=3 расположены сниву и сверху от нее, но настолько близко, что чертить их в данном масштабе не имело бы смысла.

Важно заметить, что область расстояний, в которой заметно существенное отклонение внутренних решений от соответствующих в общей теории относительности, порядка гравитационного радиуса $R_{\rm g}=2M$ конфигурации.

Автор выражает благодарность Г. С. Саакяну за обсуждения.

Polytropic models by the relativistic generalized theory of gravity. The polytropic models (n=0, 1.5, 3) by the relativistic generalized theory of gravity are investigated. The central value of the parameter of relativity P_0/p_0 for gravitars is shown to be limited. This fact is due to the generalized theory.

1 октября 1968

Бюраканская астрофизическая обсерватория

нкнамацанан.

ЛИТЕРАТУРА

- 1. М. А. Мнацаканян, Р. М. Авакян, Астрофизика, 4, 646, 1968.
- 2. Г. С. Саакян, М. А. Мнацаканян, Астрофизика, 4, 567, 1968.
- 3. Г. С. Саакян, М. А. Мнацаканян, Астрофизика, 5, 569, 1969.

КОСМОЛОГИЧЕСКИЕ РЕШЕНИЯ УРАВНЕНИЙ ПОЛЯ ИОРДАНА-ДИКЕ И НАБЛЮДАТЕЛЬНЫЕ ДАННЫЕ

Известно, что наряду с уравнениями гравитационного поля Эйнштейна развивается релятивистская тензорно-скалярная теория Иордана-Дике [1--3], которая не противоречит имеющимся наблюдательным данным. В этой теории помимо метрического тензора вводится переменный скаляр, фигурирующий в виде гравитационной постоянной в уравнениях поля Эйнштейна. Сама идея переменности "гравитационной постоянной" гармонирует с рядом, главным образом, геофизических данных [2, 4, 5].

В данном сообщении приводятся некоторые космологические следствия уравнений Иордана-Дике.

1. Автором было получено точное однородное и изотропное решение при ультрарелятивистском уравнении состояния $(P = \rho c^2/3)$: