академия наук армянской ССР АСТРОФИЗИКА

TOM 5

МАЙ, 1969

выпуск 2

МОДЕЛЬ РАСПРЕДЕЛЕНИЯ МАСС В М 31. II.

В. С. СИЗИКОВ Поступила 28 октября 1967

Рассчитана модель галактики М 31 в виде неоднородного неподобного сфероида. В основу расчета положены закон вращения подсистемы нейтрального водорода ван де Хюлста, Раймонда и ван Вердена [4] и фотометрические данные де Вокулера и др. [2]. При принятом расстоянии до М 31 630 кпс вычислены сферичность, плотность, отношение масса—светимость и масса в функции большой полуоси сфероида (до большой полуоси 180' ~ 33 кпс), а также пространственный потенциал.

1. Исходные данные и результаты расчетов. В Вычислительном центре Ленинградского университета выполнены расчеты модели галактики М 31 в виде неоднородного неподобного сфероида (поверхности постоянной плотности массы и светимости — совпадающие сфероиды с переменной сферичностью). Согласно [1], видимый модуль расстояния до М 31 взят равным 24^m 6, поглощение 0^m 6 [2], что соответствует расстоянию 630 клс (1' = 183 лс).

Известно, что NE- и SW-половины, а также SE- и NW-половины M31 несимметричны одна относительно другой как в отношении вращения, так и фотометрически. Мы будем использовать данные наблюдений, осредненные как по NE- и SW-половинам, так и по SE- и NW-половинам.

Закон вращения М 31 получен рядом авторов: Бэбкоком [3], ван де Хюлстом, Раймондом и ван Верденом [4], Готтесман, Дейвис и Реддиш [5], Робертс [6] и др. Чтобы сделать выбор, поставим следующие условия, которым должен удовлетьорять полученный закон вращения, чтобы обеспечить желаемую точность модели: 1) близость к закону кругового вращения (для чего необходимо, чтобы закон вращения был получен для подсистемы с малой дисперсией остаточных скоростей, то есть по возможности наиболее уплощенной), 2) наличие подробных данных вблизи центра, 3) достаточная протяженность (до $2-3^{\circ}$ от центра), 4) гладкость, 5) одинаковая изученность вращения NE- и SW-половин. Закон вращения Бъбкока с характерным максимумом при расстоянии от центра $\approx 3'$ и почти нулевым минимумом при 8-9' не удовлетворяет первому условию вблизи центра, так как этот закон, согласно интерпретации П. П. Паренаго [7, стр. 389], определяется суммой кривых вращения центроидов сферической и плоской составляющих и с приближением к центру он все более отличается от закона кругового вращения. Кроме того, кривая скоростей Бъбкока уверенно простирается до расстояния от центра лишь $\approx 0^{0}5$.

Три другие отмеченных закона получены по излучению одной из наиболее уплощенных подсистем—подсистемы нейтрального водорода. Но Готтесман, Дейвис и Реддиш подробно исследовали вращение лишь SW-половины M 31, а закон вращения Робертса имеет слишком большой разброс точек, вследствие чего кривая вращения проводится неуверенно.

Закон вращения ван де Хюлста, Раймонда и ван Вердена наиболее полно удовлетворяет поставленным условиям (за исключением условия 2). Повтому для расчета модели М 31 мы воспользовались этим законом. В табл. 1 приведены лучевые скорости в функции расстояния от центра (в мин. дуги) вдоль линии узлов согласно данным этих авторов.

						1 00	лица І
R'	7.5	15	22.5	30	37.5	45	60
V _{лүч} , км/сек	100	187	234	259	270	267	255
R'	75	90	105	120	135	150	180
V _{луч} , кжісек	243	236	230	226	221	216	206

В качестве фотометрических данных (осреденных как по NE-и SW-половинам, так и по SE- и NW-половинам) использованы результаты де Вокулера [2], составленные по совокупным данным нескольких авторов (Редман и Ширлей, Фрике, Стеббинс и Уитфорд, де Вокулер). Эти данные приведены к системе *B*-величин де Вокулера, исправлены за поглощение в земной атмосфере и за излучение фона и в них исключено влияние спутников NGC 205 и M 32 на распределение светимости в M 31. Они приведены в виде точек на рис. 1 и 2 где *B*— значение *B*-величины (в системе UBV), еще не исправленной за поглощение в Галактике, на кв. сек. дуги; х и у— расстояния от центра соответственно вдоль линии узлов и малой оси в мин. дуги. Поскольку вблизи центра *B*-величина с изменением расстояния изменяется быстро, то для удобства отображения мы отложили по горизонтальным осям Vx и Vy. Через совокупность точек на рис. 1 и 2 провели сглаженные кривые до $B = 26^{m}8$. Чтобы распространить фо-

тометрические данные дальше, до того же удаления от центра, что и закон вращения (если считать вдоль линии узлов), мы произвели вкстраполяцию (пунктир на рис. 1 и 2). 162—10

В табл. 2 приведены окончательные фотометрические данные вдоль большой и малой осей, снятые со сглаженных кривых рис. 1 и 2 (В-величины по-прежнему не исправлены за поглощение в Галактике). Эти данные, наряду с законом вращения, положены в основу расчета модели M 31.

Таблица 2

x	0′	0.5	1	2	3:	4	5	10	15	20
$B \frac{m}{(1^{*})^{3}}$	15.1	18.0	18.6	19.4	19.85	20.25	20.55	21.4	21.8	22.2
x	30′	40	50	60	70	90	110	130	150	180
В	22.55	22.8	23.05	23.4	23.9	25.0	26.1	27.2	28.3	30.0
y	0′	0.5	1	1.5	2	3	4	5	6	8
В	15.1	18.2	18.9	19.4	19.8	20.4	20.95	21.35	21.7	22.2
y	10′	13	16	19	22	25	30	40	50	57.5
В	22.6	23.05	23.45	23.9	24.4	24.85	25.65	27.25	28,8	30.0

Существуют следующие оценки угла между лучом зрения и осью вращения M 31: $i = 75^{\circ}$ (Кинман [8]), $i = 74^{\circ}$ (Арп [9]), i = 77.7 (Бааде [10]). К выбору значения угла i нужно подходить осторожно, поскольку (как мы увидим дальше при анализе результатов Шмидта) небольшие изменения его (на 2—3°) приводят к значительным изменениям сферичности, плотности и т. д. Мы остановились на значении i = 77.7, определенном по сильно уплощенной подсистеме водорода HII. Г. М. Идлис [11] привел доводы в пользу именно втого значения угла i.

Абсолютная В-величина Солнца принята равной 5.^m47⁻ [2], его масса — 2·10³³2.

По данным табл. 2 способом, изложенным в работе [12], определена сферичность c(a) (согласно выражению (31) этой работы), отображенная на рис. З пунктирной линией (a — большая полуось сфероида). Для сравнения на рис. З нанесена функция

$$\tau(a) = \frac{\sqrt{\eta^2(a) - \cos^2 i}}{\sin i},\tag{1}$$

где η — отношение полуосей "видимых" эквиденсит. Мы видим, что действительная степень различия в сжатии различных областей М 31 несколько больше той, которая дается функцией $\tau(a)$. Но поскольку функции c(a) и $\tau(a)$ отличаются друг от друга незначительно, то $\tau(a)$ может служить первым приближением функции c(a), как это уже

отмечалось в [13]. Взаимный характер поведения функций т (a) и c (a) согласуется с качественными выводами, сделанными в [12].

Рис. 3.

Ход функции c(a) должен быть ограничен требованием непересечения поверхностей постоянной плотности, записывающимся в виде (ср. [14]):

$$\frac{d b(a)}{da} > 0, \qquad (2)$$

где $b(a) = c(a) \cdot a$. Нарушению условия (2) не препятствуют ни условие

$$\frac{d\eta(a)\cdot a}{da} > 0, \tag{3}$$

ни монотонность падения яркости с удалением от центра (что имеет место в фотометрических данных, использованных нами). Чтобы проверить, выполняется ли условие (2), мы построили функцию b(a). Эта функция отображена на рис. 4 сплошной линией. Как показывает рис. 4, в области $a \approx 30-50' \approx 5.5-9$ кпс условие (2) не выполняется, что требует специального объяснения.

Известно, что на структуру галактик большое влияние оказывает разбиение на подсистемы. Это приводит к заметному отличию эквиденсит в некоторых областях от сфероидов. И если эквиденситы все же моделировать сфероидами, то может возникнуть явление их пересечения. Кроме того, определенную роль играют и ошибки измерений (из рис. 1 и 2 видно, что в области $B \approx 22.6 - 23$ ^m0, соответствующей $a \approx 30-50'$, имеет место дефицит точек, вследствие_чего кривые B(x) и B(y) в этих местах проводятся неуверенно).

Чтобы соблюсти условие (2) и, таким образом, построить непротиворечивую модель, мы искусственно провели в области $a \approx 15-65'$ ереднюю сглаженную функцию b(a), для которой это условие выполняется. На рис. 4 эта сглаженная функция отмечена пунктиром. Вследствие такого искусственного приема полученную модель M 31 следует рассматривать как некое приближение, способное удовлетворителлно описывать реальное распределение масс в областях $a \leq 20'$ и $a \geq 60'$ и дающее лишь качественное представление об области $20' \leq a \leq 60'$.

Функция c(a), полученная по сглаженной b(a), отображена на рис. З и в табл. З и все дальнейшие расчеты выполнены с использованием сглаженной c(a).

Способом, изложенным в работе [12] (путем решения уравнения (8) втой работы методом последовательных приближений), вычислена

плотность p(a). Затем вычислена масса в пределах сфероида с большой полуосью a, равная:

$$\mathfrak{M}(a) = 4\pi \int_{0}^{a} \varphi(t) c(t) \left[1 + \frac{1}{3} \frac{d \ln c(t)}{d \ln t} \right] t^{2} dt, \qquad (4)$$

и отношение светимость—масса x(a) в солнечных единицах (согласно выражению (33) работы [12]) с поправкой за поглощение. Эти данные приведены в табл. 3 и на рис. 5, причем вместо x(a) приведена более

Рис. 5. Отношение масса — светимость в солночных единицах. — результат наших расчетов (с поправкой за поглощение в Галактике), — — — результат Шмидта [17], — · — · — результат Уайза и Мейалла [16].

привычная функция $x^{-1}(a)$ (отношение масса—светимость), которую для удобства обозначим через f(a) (т. е. $f(a) \equiv x^{-1}(a)$). Далее с использованием функций c(a) и $\rho(a)$ рассчитан потенциал $\Phi(R, z)$ (согласно выражению (37) работы [12]) (табл. 4 и рис. 6). Среднее значение сферичности

	~ ~		_
			_
_	~~~	a pase all re	-

a'	0	5	10	15	20	25	30	35	40	45
а, кпс c(a) p·10 ²⁴ , 1/см ³	0 1 47.0	0.915 0.70 33.7	1.83 0.54 25.5	2.745 0.442 26.4	3.66 0.350 25.0	4.575 0.290 19.6	5.49 0.245 15.3	6.405 0.212 12.3	7.32 0.188 9.65	8.235 0.170 7.06
∭, 101®⊙ f(a)	0 0.305		0.613 1.84		2.85 13.3		5.62 20.1	1	8.08 18.5	
a'	50	60	70	80	90	100	120	140	160	180
а, клс c(a) p·10 ²⁴ , 1/см ³ Д, 10 ¹⁰ ⊙ f(a)	9.15 0.158 5.04 10.1 12.2	10.98 0.149 2.69 11.8 9.0	12.81 0.156 1.30 13.3 6.9	14.64 0.170 1.07 14.7 9.8	16.47 0.184 0.785 16.4 13.0	18.30 0.195 0.600 18.0 18.0	21.96 0.212 0.351 20.9 34.9	25.62 0.224 0.206 23.5 71.7	29.28 0.233 0.184 25.8 282	32.94 0.239 0.064 27.6

Таблица 4

ПРОСТРАНСТВЕННЫЙ ПОТЕНЦИАЛ Ф (R, z) В 104 км²/сек²

1	R	0'	10	20	40	60	80	100	120	140	160	180	200	220
	0'	20.84	19.89	17.45	12.81	9.87	8.03	6.72	5.73	4.94	4.27	3.72	3.28	2.94
	5	18.85	18.19	16.59	12.65	9.84	8.02	6.71	5.72	4.93	4.26	3.72		
1	0	16.85	16.39	15.23	12.20	9.71	7.98	6.69	5.71	4.90	4.24	3.71		
1	5	15.20	14.89	14.00	11.64	9.48	7.85	6.62	5.66	4.87	4.22	3.70		-
2	0	13.80	13.60	12.93	11.00	9.16	7.67	6.50	5.59	4.82	4.19	3.68		
3	0	11.70	11.58	11.17	9.87	8.47	7.24	6.24	5.39	4.68	4.10	3.64		
4	0	10.08	10.01	9.74	8.82	7.78	6.80	5.91	5.19	4.54	4.01	3.58		
5	0	8.87	8.81	8.64	7.97	7.17	6.38	5.61	4.98	4.40	3.92	3.51		
6	0	7.90	7.86	7.72	7.26	6.60	5.98	5.33	4.78	4.25	3.81	3.44		
8	0	6.48	6.45	6.37	6.09	5.69	5.25	4.80	4.36	3.96	3.59	3.27		
10	0	5.47	5.44	5.39	5.20	4.96	4.67	4.30	3.99	3.66	3.37	3.10		
12	0	4.71	4.70	4.68	4.56	4.36	4.14	3.91	3.65	3.40	3.16	-		
15	0	3.90	3.90	3.88	3.82	3.71	3.58-	3.40	3.23	3.04				
18	0	3.35	3.35	3.34	3.29	3.20	3.12	3.00				1		

модель распределения масс в м 31

найдено равным 0.204. Все интегралы, необходимые для отыскания p(a), $\mathfrak{M}(a)$, $\varkappa(a)$, $\Phi(R, z)$ и \overline{c} , определялись численно по формуле

Рис. 6. Кривые постоянного потенциала в плоскости Rr.

Симпсона с шагом 5' (что примерно равно среднему расстоянию между соседними точками в фотометрических данных вдоль линии узлов (рис. 1) и его половине в законе вращения (табл. 1)).

2. Обсуждение полученных результатов и сравнение с результатами других авторов. Как показывает рис. 3, сферичность с (а) сначала быстро уменьшается от значения 1 до минимального (0.15) эначения при удалении от центра, а затем несколько повышается с ростом большой полуоси а на периферии. Условно можно выделить 3 подсистемы:

1. Подсистема, примыкающая к центру ($a \leq 30'$) с характерным быстрым увеличением сферичности к центру, вследствие чего область, непосредственно прилегающую к центру ($a \leq 5'$), можно назвать "сферической" подсистемой.

2. "Плоская" подсистема (40' $\leq a \leq 90$ ') с минимальным средним вначением $c \approx 0.17$).

3. Подсистема, переходная к короне ($a \gtrsim 100'$), с некоторым увеличением сферичности с ростом a.

Такое морфологическое подразделение находит свое подтверждение и в поведении функции f (a) (отношение масса-светимость) (рис. 5). В "сферической" подсистеме f имеет минимальное значение. Поэтому ядро, несмотря на известный факт повышенного значения показателя цвета (см. например, [15, стр. 229]), обладает повышенной излучательной способностью в голубых В-лучах (в расчете на единицу массы). Это следует считать отражением высокой активности ядра. Функция f (a) имеет еще один минимум, который приходится на "плоскую" подсистему, что согласуется с нашими представлениями о пониженном значении отношения масса-светимость в уплощенных. подсистемах галактик. В промежуточной подсистеме, располагающейся между подсистемой, примыкающей к центру, и плоской" подсистемой, f имеет местный максимум. В системе, переходной к короне, f резко возрастает с ростом а, то есть излучательная способность вещества (главным образом, звезд) на периферии резко падает с удалением от центра. Это, в частности, затрудняет проведение фотометрии на периферии М 31.

Как видно из табл. 3 и рис. 5, функция $f(\alpha)$ обладает очень большим диапазоном изменений. Этот результат не является неожиданным, так как он качественно совпадает с результатами предыдущих моделей M31. На рис. 5 для сраввения приведены результаты определения функции f (a) в плоской модели Уайза и Мейалла [16] и в модели Шмидта [17], представляющей суперпозицию двух неоднородных сферондов с постоянной сферичностью, равной 0.07. Правда, те и другие результаты получены в проекции на картинную плоскость вдоль линии узлов и не исправлены за поглощение света. Кроме того. в моделях Уайза и Мейалла, Шмидта и нашей модели в качестве исходных данных использованы различные законы вращения и фотометрические данные. Повтому количественное сравнение результатов определения f (a) в первых двух моделях с результатами нашей модели затруднительно. Тем не менее, можно отметить, что предыдущие результаты подтверждают вывод о большом диапазоне изменений отношения масса-светимость в. М 31. Кроме того, как показывает

рис. 5, качественный ход функции f(a) во всех трех моделях во многом подобен.

Функция пространственной плотности $\rho(\alpha)$ кроме максимума в центре, имеет локальный максимум при $\alpha = 15'$. Но судить о реальности максимума при $\alpha = 15'$ трудно, поскольку закон вращения ван де Хюлста и др., использованный нами, не обладает достаточной подробностью вблизи центра (при $\alpha \leq 20'$). Более того, мы сейчас вообще не располагаем законом вращения М 31, в одно и то же время близким к круговому (то есть полученным по излучению подсистемы, возможно более уплощенной, например, подсистемы нейтрального водорода) и достаточно подробным (с интервалом между соседними точками порядка 1') вблизи центра.

Поведение функции IX (а) (табл. 3) показывает, что, по-видимому, полная масса M 31 данной моделью еще не исчерпана, т. к. следовало ожидать асимптотического приближения функции IX (а) к значению полной массы. Это подтверждают и определения полной массы M 31, выполненные Брандтом [18] на основе результатов других авторов (Бебкок, Уайз и Мейалл, Шварцшильд, Лёман, Шмидт). Брандт сделал 4 "приведения" (поправки):

1) за ненулевую сферичность, взяв значение c = const = 0.2, 2) отнес значение массы ко всей галактике, 3) привел наблюдательные данные к единой системе, 4) отнес найденные значения \mathfrak{M} к одному расстоянию (600 клс). Модель неоднородного сфероида с постоянной сферичностью, которую использовал Брандт, несмотря на то, что она не учитывает переменность сжатия различных областей M 31, должна давать хорошее приближение для полной массы, так как в качестве среднего значения сферичности в ней используется значение, близкое к (7). При расстоянии 630 клс "приведенные" Брандтом значения полной массы M 31 будут заключаться в пределах. (37-42) $\cdot 10^{10}$. В данной же модели \mathfrak{M} (180') = 27.6 $\cdot 10^{10}$.

Таким образом, все указывает на то, что полная масса M 31 данной моделью не исчерпана. Для построения более полной модели необходимы данные, по-видимому, до расстояния от центра (считая вдоль линии узлов) $\approx 4^{\circ}$.

В заключение обсудим среднее значение сферичности для M 31. Шмидтом [17] была рассчитана модель M 31 в виде суперпозиции двух неоднородных сфероидов постоянной сферичности, равной для каждого сфероида 0.07. Столь малое значение с было выбрано на основе измерений Уайзом и Мейаллом [16] осевого отношения спиральных галактик, видимых с ребра. Для 6 галактик они нашли, пользуясь визуальными измерениями фотографий, значение с между 0.07 и 0.11, в среднем 0.08. Новейшие же измерения (с учетом поправок за.

субъективные систематические ошибки, вызванные большим различием малого и большого диаметров у каждой из этих галактик) [19] приводят к большим значениям с для тех же галактик. В табл. 5 приведены результаты Уайза и Мейалла [16] и данные каталога де Вокулера [19], представляющие результаты новейших измерений (А означает большую полуось галактики).

Таблица 5

NGC	Уайз н	Мейалл	де Вокулер					
	2A	c	2 <i>A</i>	c	V.199			
891	11'1	0.07	12.3	0.16	243			
4244	12.8	0.09	15.85	0.12	269			
4565	14.5	0.07	15.5	0.14	1171			
4631	13.4	0.11	14.45	0.18	646			
5746	6.8	0.09	7.25	0.19	1826			
5907	11.2	0.07	11.75	0.115	725			

Из 5 столбца табл. 5 видно, что по новым, более точным данным в среднем c = 0.15, то есть почти вдвое больше, чем это следовало из измерений Уайза и Мейалла. Следует еще отметить, что галахтики, видимые с ребра, являются относительно редкими и поэтому весьма удаленными (в последнем столбце табл. 5 для характеристики расстояний приведены лучевые скорости галактик, исправленные за вращение Галактики). Вследствие этого у них наблюдается главным образом наиболее яркая уплощенная подсистема, что дополнительно занижает значение с. Поэтому средним значением с для спиральных галактик (без учета их центральных областей) следует считать значение > 0.15. Если же учесть и центральные области галактик, то значение c еще повысится.

Поэтому использованное Шмидтом среднее для всего объема M 31 значение сферичности 0.07 следует считать заниженным, тем более, что для приведения значения c = 0.07 в соответствие со средним значением величины η во внешних областях M 31 (η — отношение полуосей "видимых" эквиденсит) Шмидт был вынужден искусственно понизить значение угла *i* до 75°.5, хотя считал наиболее вероятным значение 77′.7 (мы видим, что изменение угла всего на 2°.2 ведет к существенному изменению сферичности и, как следствие, плотности, отношения масса—светимость и т. д.). Среднее значение с, найденное в данной работе равным 0.204, как и значение 0.2, использованное Брандтом [18] и некоторыми другими авторами, следует считать более реальным. Отметим, что всюду речь идет о фотометрическом значении с. Динамическое же значение с больше, чем фотометрическое, поскольку распределение светимости является более уплощенным, чем распределение масс. Но в данной работе это различие не учитывалось.

Аенинградский Государственный университет

A MODEL OF THE DISTRIBUTION OF MASS IN M 31. II.

V. S. SIZIKOV

A model of the galaxy M 31 in the form of a non-homogeneous unsimilar spheroid is calculated. The law of the rotation of subsystem of neutral hydrogen of van de Hulst, Raimond and van Woerden [4] and the photometric data of Vaucouleurs et cet. [2] are taken as the basis of calculation. Adopting the value 630 kpc for the distance to M 31 the sphericity, the density, the mass-luminosity ratio, the mass as the function of the large semiaxe of spheroid (to the large semiaxe $180' \approx 33 \, kpc$) and the spatial potential are calculated.

ЛИТЕРАТУРА

1. A. Sandage, Ap. J., 127, 513, 1958.

- 2. G. de Vaucouleurs, Ap. J., 128, 465, 1958.
- 3. H. W. Babcock, Lick Obs. Bull., 19, No. 498, 1939.
- 4. H. C. van de Hulst, E. Raimond, H. van Woerden, BAN, 14, 1, 1957.
- 5. S. T. Gottesman, R. D. Davies, V. C. Reddish, M. N., 133, 359, 1966.
- 6. M. S. Roberts, Ap. J., 144, 639, 1966.
- 7. П. П. Паренаю, Курс звездной астрономии. М., 1954.
- 8. T. D. Kinman, Ap. J., 142, 1376, 1965.
- 9. H. C. Arp, Ap. J., 139, 1045, 1964.
- 10. W. Baade, H. H. Swope, A. J., 68, 435, 1963.
- 11. Г. М. Идлис, Тр. Астроф. ин-та АН КазССР, 1, 1961.
- 12. В. С. Сизиков, Астрофизика, 4, 633, 1968.
- 13. В. С. Сизиков, Астрофизика, 3, 267, 1967.
- 14. С. А. Кутувов, Тр. Астроф. ин-та АН КазССР, 5, 78, 1965.
- 15. В. Бааде, Эволюция звезд и галактик, М., 1966.
- 16. A. B. Wyse, N. U. Mayall, Ap. J., 95, 24, 1942.
- 17. M. Schmidt, BAN, 14, 17, 1957.
- 18. J. C. Brandt, Ap. J., 131, 293, 1960.
- 19. G. de Vaucouleurs, Reference cataloque of bright galaxies, 1964.