АСТРОФИЗИКА

TOM 4

НОЯБРЬ, 1968

ВЫПУСК 4

О ВНУТРЕННЕМ РЕШЕНИИ СТАЦИОНАРНЫХ АКСИАЛЬНО-СИММЕТРИЧЕСКИХ ГРАВИТАЦИОННЫХ ПОЛЕЙ

Д. М. СЕДРАКЯН, Э. В. ЧУБАРЯН Поступила 1 апреля 1968

Разработан метод получения внутренних решений уравнений Эйнштейна для стационарных аксиально-симметрических гравитационных полей в приближении Ω^2 (Ω —угловая скорость вращения). Задача сводится к интегрированию обыкновенных дифференциальных уравнений с начальными условиями.

Предлагаемый метод применим для любых уравнений состояния.

1. Уравнения Эйнштейна внутри распределения масс. Рассмотрим метрику гравитационного поля, создаваемого стационарным вращением масс. Очевидно, что в этом случае распределение масс, а также гравитационное поле будут аксиально-симметрическими, то есть

$$g_{ik} = g_{ik}(R, \theta, \Omega), \tag{1}$$

где $\Omega = \frac{d\varphi}{dx^0}$ —угловая скорость вращения.

Для такого типа полей метрику можно выбрать следующим образом [1-2]:

$$-ds^{2} = e^{\lambda} dR^{2} + e^{\mu} (d\theta^{2} + \sin^{2}\theta d\varphi^{2}) + 2\omega e^{\mu} \sin^{2}\theta d\varphi dt + (\omega^{2}e^{\mu} \sin^{2}\theta - e^{\nu}) dt^{2}.$$
 (2)

Так как метрика должна быть инвариантной относительно преобразования $t \to -t$, а угловая скорость при таком преобразовании меняет знак, то ясно, что все компоненты метрического тензора, кроме ω , зависят от четных степеней Ω . Что касается функции ω , она, очевидно, должна зависеть только от нечетных степеней Ω .

Наша задача состоит в определении компонент метрического тенвора $g_{lk}(R, \theta, \Omega)$ внутри распределения масс. В эти функции угловая скорость входит как параметр. Разлагая их в ряд по Ω , мы в дальнейшем ограничимся членами порядка Ω . Как было отмечено в работе [2], это приближение приводит к несферичности конфигурации, появлению центробежных сил и квадрупольных моментов.

Уравнения Эйнштейна запишем в виде

$$G_i^k = 8\pi T_i^{k}, \tag{3}$$

где T^k — тензор энергии-импульса:

$$T_i^k = (P + \rho) u_i u^k + P \delta_i^k. \tag{4}$$

Здесь P—давление вещества, ρ —плотность, а u^l —компонента четырехмерной скорости. Компоненты тензора G_l^k для метрики (2) приведены в работе [2].

Для области пространства, занятого веществом, имеются шесть независимых функций λ , μ , ν , ω , u^3 и плотность вещества ρ (предполагается, что уравнение состояния задано в виде $P=P(\rho)$). Для нахождения втих шести неизвестных функций мы можем использовать шесть уравнений Эйнштейна, или два из них заменить уравнениями гидродинамического равновесия

$$T_{i;k}^{k}=0. ag{5}$$

В работе [1] показано, что уравнения (5) сводятся к следующим:

$$u^3 = \Omega u^0, \tag{6}$$

$$M(R,\theta) = \int \frac{dP'}{P' + \rho'} = -\frac{1}{2} v - \frac{1}{2} \ln \left[1 - e^{u - v} (\omega + \Omega)^2 \sin^2 \theta\right] + C, \quad (7)$$

где C — постоянная интегрирования. Уравнение (6) означает, что конфигурация должна вращаться с постоянной угловой скоростью Ω . Для u^0 из условия $u_a u^a = -1$ получается следующее выражение:

$$u^{0} = [e^{\epsilon} - e^{u} (\omega + \Omega)^{2} \sin^{2} \theta]^{-1/2}.$$
 (8)

Соотношение (7) есть интеграл релятивистских уравнений гидродинамического равновесия.

В качестве независимых уравнений, определяющих искомые функции, выберем (6), (7) и следующие из уравнений Эйнштейна:

$$G_1^1 - G_0^0 = 8\pi (T_1^1 - T_0^0), \quad G_2^2 + G_3^3 = 8\pi (T_2^2 + T_3^3),$$

$$G_2^1 = 0, \quad G_3^0 = 8\pi T_3^0.$$
(9)

Заметим, что вне распределения масс остаются только четыре неизвестные функции ν , μ , λ и ω , которые определяются из системы (9) с $T_{i}^{k}=0$.

В качестве малого параметра разложения в ряд компонент метрического тензора вместо Ω выберем не имеющую размерности величину $\beta = \frac{\Omega^2}{8\pi r_c}$ (ρ_c — плотность вещества в центре конфигурации). Тогда

вти компоненты можно представить в виде:

$$e^{-\lambda} = e^{-\lambda^{\circ}} (1 + \beta f), \quad e^{\nu} = e^{\nu^{\circ}} (1 + \beta \Phi), \quad e^{\mu} = R^{2} (1 + \beta U)$$

$$\omega = \sqrt{\beta} q,$$
(10)

где f, Φ , U, и q — неизвестные функции от R и θ , а $e^{i\theta}$ и $e^{i\theta}$ — компоненты метрического тензора соответствующей сферической задачи. Аналогично, давление, плотность вещества и функцию $N(R, \theta)$ представим в виде

$$P' = P^{0} + \beta P, \quad \rho' = \rho^{0} + \beta \rho$$

$$M(R, \theta) = m(R) + \beta N(R, \theta),$$
(11)

где P^0 , p^0 и m(R) — соответствующие величины для невозмущенной сферической задачи.

Подставляя (10) и (11) в уравнения (7) и (9), получаем следующую систему уравнений:

$$U_{11} + \frac{2}{R}U_{1} - \frac{1}{R}(\Phi_{1} - f_{1}) - 8\pi (P^{0} + \rho^{0}) e^{\lambda \theta} \left(\frac{R}{2}U_{1} + f\right) - \frac{e^{\lambda \theta}}{2R^{2}} \frac{\partial}{\partial \gamma} \left\{ (1 - \gamma^{2}) \frac{\partial}{\partial \gamma} (\Phi + f) \right\} = -8\pi e^{\lambda^{2}} (P + \rho) - (12)$$

$$- 12\pi e^{\lambda^{0}} (P^{0} + \rho^{0}) K(R) \sin^{2}\theta,$$

$$U_{11} + \Phi_{11} + \left(\sqrt{1 - \frac{\lambda^{0}}{2}} + \frac{1}{R} \right) \Phi_{1} + \left(\frac{2}{R} - \frac{\lambda^{0}_{1} - \sqrt{1}}{2}\right) U_{1} + \left(\frac{\sqrt{1}}{2} + \frac{1}{R} \right) f_{1} + 16\pi P^{0} e^{\lambda^{0}} f + \frac{e^{\lambda^{0}}}{2R^{2}} \frac{\partial}{\partial \gamma} \left\{ (1 - \gamma^{2}) \frac{\partial}{\partial \gamma} (\Phi - f) \right\} = (13)$$

$$= 16\pi P e^{\lambda^{0}} + [12\pi e^{\lambda^{0}} (P^{0} + \rho^{0}) K(R) + R^{2} q_{1}^{2} e^{-\sqrt{1}}] \sin^{2}\theta,$$

$$f_{2} \left(\frac{1}{R} + \frac{\sqrt{1}}{2} \right) - \Phi_{2} \left(\frac{1}{R} - \frac{\sqrt{1}}{2} \right) + U_{12} + \Phi_{12} = 0,$$

$$q_{11} + \left[\frac{4}{R} - 4\pi e^{\lambda^{0}} (P^{0} + \rho^{0}) R \right] q_{1} - 16\pi (P^{0} + \rho^{0}) e^{\lambda^{0}} q = (15)$$

 $=16\pi e^{\lambda^0} \sqrt{8\pi\rho_c} (P^0+\rho^0),$

$$N(R, \theta) = -\Phi(R, \theta) + K(R)[1 - P_2(\gamma)] + C_{10}, \tag{16}$$

где

$$K(R) = \frac{2}{3} R^2 e^{-\gamma^0} (q + \sqrt{8\pi\rho_c})^2.$$
 (17)

В этих уравнениях использованы обозначения $\frac{\partial \psi}{\partial R} = \psi_1$, $\frac{\partial \psi}{\partial \theta} = \psi_2$, $\gamma = \cos \theta$, и постоянная C, входящая в уравнение (7), представлена в виде $C = C_0 + \beta C_{10}$.

При получении системы уравнений (12)-(16) предположено, что функция q зависит только от R. Действительно, в работе [3] показано, что вне распределения масс функция q имеет вид

$$q = -\sum_{l=0}^{\infty} \frac{C_1}{R^{l+2}} F(l+2, l-1, 2l+2, -\frac{\alpha}{R}) P_l^{(1)}(\gamma),$$

где F(l+2, l-1, 2l+2, -a/R) — гипергеометрическая функция Гаусса, $P_l^{(1)}(\gamma) = -\frac{dP_l(\gamma)}{d\gamma}$, а $P_l(\gamma)$ — полином Λ ежандра порядка l.

Внутри распределения масс функция q определяется из следующего уравнения:

$$q_{11} + \left[\frac{4}{R} - 4\pi e^{\lambda^{0}} (P^{0} + \rho^{0}) R \right] q_{1} - 16\pi (P^{0} + \rho^{0}) e^{\lambda^{0}} q +$$
 $+ \frac{e^{\lambda^{0}}}{R^{2}} [q_{22} + 3q_{2} \operatorname{ctg} \theta] = 16\pi e^{\lambda^{0}} (P^{0} + \rho^{0}) \sqrt{8\pi \rho_{c}}.$

Решение этого уравнения ищем в виде

$$q = \sum_{t=0}^{\infty} Q_t(R) P_t^{(1)}(\gamma).$$

Тогда для $Q_1(R)$ получим уравнение (15), а для $Q_l(k)$ с l>1 получим

$$\frac{d^{2}Q_{l}}{dR^{2}} + \left[\frac{4}{R} - 4\pi e^{\lambda^{0}} (P^{0} + \rho^{0}) R\right] \frac{dQ_{l}}{dR} - \\ -16\pi e^{\lambda^{0}} (P^{0} + \rho^{0}) Q_{l} - \frac{e^{\lambda^{0}}}{R^{2}} (l-1) (l+2) Q_{l} = 0.$$

Итак, функция Q_l удовлетворяет линейному однородному дифференциальному уравнению, и его решение можно представить в виде

$$Q_l = b_l q_l(R)$$
.

Значения постоянных b_l определяются вместе со значениями C_l из условия непрерывности $\omega(R, \gamma)$ и ее первой производной по R на границе конфигурации. Так как ω пропорциональна 1/3, а изменение формы поверхности звезды от сферической появляется в приближении β , то, ограничиваясь приближением β , мы должны потребовать непрерывность функции ω и ее первой производной на поверхности сферы радиуса R_0 (R_0 — радиус соответствующей сферической конфигурации). Тогда значения постоянных b_l и C_l для l > 1 должны быть найдены из следующей системы однородных алгебраических уравнений

$$b_{l}g_{l}(R_{0}) + \frac{C_{l}}{R_{0}^{l+2}}F\left(l+2, l-1, 2l+2, -\frac{a}{R_{0}}\right) = 0,$$

$$dg_{l}(R_{0}) + G d \left[F\left(l+2, l-1, 2l+2, -\frac{a}{R_{0}}\right)\right]$$

$$b_{l}\frac{dg_{l}(R_{0})}{dR}+C_{l}\frac{d}{dR}\left\{\frac{F\left(l+2,\ l-1,\ 2l+2,\ -\frac{\alpha}{R_{0}}\right)}{R_{0}^{l-2}}\right\}=0.$$

Так как детерминат этой системы отличен от нуля, то она имеет единственное решение $b_l = C_l = 0$.

Таким образом, в рассматриваемом нами приближении функция q зависит только от R и $q \equiv Q_1(R)$.

Коэффициенты, входящие в уравнения (12)—(16), определяются из решений следующей системы [3]:

$$\frac{d u^{0}}{dR} = 4\pi \rho^{0} R^{2}, \quad \frac{dP^{0}}{dR} = -\frac{P^{0} + \rho^{0}}{R(R - 2u^{0})} (4\pi R^{3} P^{0} + u^{0}),
e^{-\lambda^{0}} = 1 - \frac{2u^{0}}{R}, \qquad v^{0} = -2 \int \frac{dP^{0}}{P^{0} + \rho^{0}} + C_{0}.$$
(18)

Исключая функцию Ф из системы (12)—(14) с помощью уравнения (16), получаем

$$U_{11} + \frac{2}{R} U_1 - \frac{1}{R} \left[-N_1 + K_1 \left(1 - P_2 (\gamma) \right) - f_1 \right] -$$

$$-8\pi \left(P^0 + \rho^0 \right) e^{\lambda \rho} \left(\frac{R}{2} U_1 + f \right) - \frac{e^{\lambda \rho}}{2R^2} \frac{\partial}{\partial \gamma} \left\{ \left(1 - \gamma^2 \right) \frac{\partial}{\partial \gamma} \left(-N + f \right) \right\} - (19)$$

$$- \frac{3e^{\lambda \rho}}{R^2} K(R) P_2 (\gamma) = -8\pi e^{\lambda \rho} \left(P + \rho \right) - 12\pi e^{\lambda \rho} \left(F^0 + \rho^0 \right) K(R) \sin^2 \theta.$$

$$U_{11} - N_{11} + K_{11} (1 - P_{2}(\gamma)) + \left(v_{11}^{0} - \frac{\lambda_{1}^{0}}{2} + \frac{1}{R} \right) [-N_{1} + K_{1} (1 - P_{2}(\gamma))] +$$

$$+ U_{1} \left[\frac{2}{R} - \frac{\lambda_{1}^{0} - v_{1}^{0}}{2} \right] + f_{1} \left(\frac{v_{1}^{0}}{2} + \frac{1}{R} \right) + 16 \pi e^{\lambda_{0}} P^{0} f^{0} -$$

$$- \frac{e^{\lambda_{0}}}{2R^{2}} \frac{\partial}{\partial \gamma} \left\{ (1 - \gamma^{2}) \frac{\partial}{\partial \gamma} (N + f) \right\} + \frac{3e^{\lambda_{0}}}{R^{2}} K(R) P_{2}(\gamma) =$$

$$= 16 \pi P e^{\lambda_{0}} + \left[12 \pi e^{\lambda_{0}} (P^{0} + \rho^{0}) K(R) + R^{2} q_{1}^{2} e^{-v^{0}} \right] \sin^{2} \theta.$$

$$f \left(\frac{1}{R} + \frac{v_{1}^{0}}{2} \right) - \left(\frac{1}{R} - \frac{v_{1}^{0}}{2} \right) [-N + K(R) (1 - P_{2}(\gamma))] +$$

$$+ U_{1} - N_{1} + K_{1} (1 - P_{2}(\gamma)) = 0.$$

$$(21)$$

Уравнение (21) получено из (14) путем интегрирования последнего по переменной θ . При этом возникает некоторая произвольная функция, зависящая от R. Эту функцию мы приняли равной нулю. Это возможно, так как при выборе интервала ds^2 в виде (2) мы оставили за собой право произвольного преобразования координаты R вида R=R(R'). Такое преобразование эквивалентно прибавлению к λ произвольной функции от координаты R и ее всегда можно выбрать так, чтобы правая часть уравнения (21) равнялась бы нулю.

Исключая функцию U из системы уравнений (19)—(21), окончательно для функций f и N получаем следующие уравнения:

$$\left[8\pi \left(P^{0}+\rho^{0}\right)-\frac{1}{R^{2}}\right]\left[N-K(R)\left(1-P_{2}\left(\gamma\right)\right)\right]-\frac{f}{R^{2}}-\frac{1}{2R^{2}}\frac{\partial}{\partial\gamma}\left\{\left(1-\gamma^{2}\right)\frac{\partial}{\partial\gamma}\left(N+f\right)\right\}+\frac{1}{R^{2}}+\frac{3K(R)}{R^{2}}P_{2}\left(\gamma\right)=16\pi P+\frac{2}{3}e^{-\lambda^{0}}\left[12\pi e^{\lambda^{0}}\left(P^{0}+\rho^{0}\right)K(R)+\frac{2}{R^{2}}e^{-\gamma^{0}}\right]\left(1-P_{2}\left(\gamma\right)\right).$$

$$-N_{11}+K_{11}\left(1-P_{2}\left(\gamma\right)\right)+\left(\frac{2}{R}-\frac{\lambda_{1}^{0}}{2}\right)\left[-N_{1}+K_{1}\left(1-P_{2}\left(\gamma\right)\right)\right]+\frac{\lambda_{1}^{0}f_{1}}{2}+\frac{\lambda_{1}^{0}}{R^{2}}\left[-N_{1}+K(R)\left(1-P_{2}\left(\gamma\right)\right)\right]+\frac{\lambda_{1}^{0}f_{1}}{2}+\frac{\lambda_{1}^{0}}{R^{2}}\left[-N_{1}+K(R)\left(1-P_{2}\left(\gamma\right)\right)\right]+\frac{\lambda_{1}^{0}f_{1}}{2}+\frac{\lambda_{1}^{0}}{R^{2}}\left[-N_{1}+K(R)\left(1-P_{2}\left(\gamma\right)\right)\right]+\frac{\lambda_{1}^{0}f_{1}}{2}+\frac{\lambda_{1}^{0}}{R^{2}}\left[-N_{1}+K(R)\left(1-P_{2}\left(\gamma\right)\right)\right]+\frac{\lambda_{1}^{0}f_{1}}{2}+\frac{\lambda_{1}^{0}}{R^{2}}\left[-N_{1}+K(R)\left(1-P_{2}\left(\gamma\right)\right)\right]+\frac{\lambda_{1}^{0}f_{1}}{2}+\frac{\lambda_{1}^{0}}{R^{2}}\left[-N_{1}+K(R)\left(1-P_{2}\left(\gamma\right)\right)\right]+\frac{\lambda_{1}^{0}f_{1}}{2}+\frac{\lambda_{1}^{0}}{R^{2}}\left[-N_{1}+K(R)\left(1-P_{2}\left(\gamma\right)\right)\right]+\frac{\lambda_{1}^{0}f_{1}}{2}+\frac{\lambda_{1}^{0}}{R^{2}}\left[-N_{1}+K(R)\left(1-P_{2}\left(\gamma\right)\right)\right]+\frac{\lambda_{1}^{0}f_{1}}{2}+\frac{\lambda_{1}^{0}}{R^{2}}\left[-N_{1}+K(R)\left(1-P_{2}\left(\gamma\right)\right)\right]+\frac{\lambda_{1}^{0}f_{1}}{2}+\frac{\lambda_{1}^{0}}{R^{2}}\left[-N_{1}+K(R)\left(1-P_{2}\left(\gamma\right)\right)\right]+\frac{\lambda_{1}^{0}f_{1}}{2}+\frac{\lambda_{1}^{0}f_{1}}{2}+\frac{\lambda_{1}^{0}f_{1}}{R^{2}}+\frac{\lambda_{1}^{0}f_{1}}{R^{2}}\left[-N_{1}+K(R)\left(1-P_{2}\left(\gamma\right)\right)\right]+\frac{\lambda_{1}^{0}f_{1}}{2}+\frac{\lambda_{1}^{0}f_{1}}{2}+\frac{\lambda_{1}^{0}f_{1}}{R^{2}}+\frac{$$

2. Внутреннее решение уравнений Эйнштейна. Решение внутренней задачи свелось к интегрированию уравнений (15), (22) и (23). Поскольку последние два содержат в себе функцию q, то необходимо интегрирование начать с (15). Решение этого уравнения будем искать в виде

$$q = DJ(R) + Q(R), \tag{24}$$

где D— постоянная интегрирования, J(R) удовлетворяет однородному уравнению (15), а Q(R)— частное решение неоднородного уравнения. Исследование поведения этого уравнения в начале координат показывает, что J(R) = const + 0 (R^2), а $Q(R) \sim R^2$, поэтому в качестве начальных условий можно выбрать

$$f(0) = 1;$$
 $\frac{df(0)}{dR} = 0;$ $Q(0) = \frac{dQ(0)}{dR} = 0.$ (25)

Имея функцию q(R), мы можем перейти к интегрированию уравнений (22) и (23), которые являются дифференциальными уравнениями в частных производных. Эти уравнения допускают разделение переменных, если решение искать в виде

$$N = \sum_{l=0}^{\infty} N_l(R) P_l(\gamma), \qquad f = \sum_{l=0}^{\infty} f_l(R) P_l(\gamma),$$

$$P = \sum_{l=0}^{\infty} P_l(R) P_l(\gamma), \qquad \rho = \sum_{l=0}^{\infty} \rho_l(R) P_l(\gamma).$$
(26)

Подставляя (25) в уравнения (22) и (23), получаем обыкновенные дифференциальные уравнения для коэффициентов разложения в ряд по полиномам Лежандра (26).

$$f_{l} = \alpha(R) N_{l}(R) + \beta(R) \delta_{l0} + \gamma(R) \delta_{l2} + \frac{16\pi R^{2}}{\frac{l(l+1)}{1} - 1} P_{l}(R).$$
 (27)

$$\frac{d^{2}N_{l}}{dR^{2}} + \left(\frac{2}{R} - \frac{\lambda_{1}^{0}}{2}\right) \frac{dN_{l}}{dR} + \left(\frac{v_{1}^{0}}{R} - \frac{v_{1}^{0}}{2} - \frac{l(l+1)}{R^{2}} e^{\lambda^{0}}\right) N_{l}(R) - \left(\frac{2}{R} - \frac{\lambda_{1}^{0}}{2}\right) K_{1}(R) \left(\delta_{l0} - \delta_{l2}\right) - \left(\frac{v_{1}^{0}}{R} - \frac{v_{1}^{0}}{2}\right) K(R) \left(\delta_{l0} - \delta_{l2}\right) - \left(\frac{v_{1}^{0}}{R} - \frac{v_{1}^{0}}{2}\right) K(R) \left(\delta_{l0} - \delta_{l2}\right) - \left(\frac{v_{1}^{0}}{R} - \frac{v_{1}^{0}}{2}\right) f_{l} - \frac{v_{1}^{0}}{2} \frac{df_{l}}{dR} - (28)$$

$$-8\pi e^{\lambda^{0}} (3P^{0} + \rho^{0}) f_{l} - \frac{6e^{\lambda^{0}}}{R^{2}} K(R) \delta_{l2} = -8\pi e^{\lambda^{0}} (3P_{l} + \rho_{l}) +$$

$$+ \frac{2}{3} [R^{2} q_{1}^{2} e^{-\gamma^{0}} + 24 \pi e^{\lambda^{0}} (P^{0} + \rho^{0}) K(R)] (\delta_{l2} - \delta_{l0}), \qquad (28)$$

где

$$\alpha(R) = -1 - \frac{8\pi (P^{0} + \rho^{0})}{\frac{l(l+1)}{2} - 1} R^{2},$$

$$\beta(R) = \frac{1}{\frac{l(l+1)}{2} - 1} \left\{ \left[16\pi (P^{0} + \rho^{0}) R^{2} - 1 \right] K(R) + \frac{2}{3} R^{4} q_{1}^{2} e^{-\lambda^{0} - \nu^{0}} \right\},$$

$$\gamma(R) = -\beta(R) - \frac{3K(R)}{\frac{l(l+1)}{2} - 1}$$

Далее, исключая функцию f_l из уравнения (28) при помощи (27), для функции N_l получаем следующее уравнение:

$$\frac{d^{2}N_{l}(R)}{dR^{2}} + X_{1}(R)\frac{dN_{l}(R)}{dR} + Y_{1}(R)N_{l}(R) = W(R)P_{l}(R) - 8\pi e^{\lambda r}\rho^{l}(R) + \frac{8\pi R^{2}\nu_{1}^{0}}{\frac{l(l+1)}{2}-1} \cdot \frac{dP_{l}}{dR} + Z(R)\delta_{l0} + V(R)\delta_{l0},$$
 (29)

тде

$$X_{1}(R) = \frac{2}{R} - \frac{\lambda_{1}^{0}}{2} - \frac{\alpha(R) \nu_{1}^{0}}{2},$$

$$Y_{1}(R) = \frac{\nu_{1}^{0}}{R} - \frac{\nu_{1}^{0}}{2} - \frac{l(l+1)}{R^{2}} e^{\lambda^{0}} + \frac{\nu_{1}^{0} \alpha(R)}{2} - \frac{l(l+1)}{2} e^{\lambda^{0}} + \frac{\nu_{1}^{0} \alpha(R)}{2} - \frac{l(l+1)}{2} e^{\lambda^{0}} + \frac{\nu_{1}^{0} \alpha(R)}{2} - \frac{l(l+1)}{2} e^{\lambda^{0}} - \frac{l(l+1)}{2$$

$$\begin{split} Z(R) &= \beta \left(R \right) \left[8\pi e^{\lambda^0} (3P^0 + \rho^0) - \frac{v_1^0}{R} - \frac{v_1^{0^*}}{2} \right] + \frac{\rho_1 v_1^0}{2} + K_1 \left(\frac{2}{R} - \frac{\lambda_1^0}{2} \right) + \\ &+ K(R) \left(\frac{v_1^0}{R} - \frac{v_1^{0^*}}{2} \right) + K_{11} \left(R \right) - \frac{2}{3} \left[24\pi e^{\lambda^0} \left(P^0 + \rho^0 \right) K(R) + R^2 q_1^2 e^{-v^0} \right], \\ V(R) &= \gamma \left(R \right) \left[8\pi e^{\lambda^0} \left(3P^0 + \rho^0 \right) - \frac{v_1^0}{R} - \frac{v_1^{0^*}}{2} \right] + \frac{v_1^0 \gamma_1}{2} - K_1 \left(\frac{2}{R} - \frac{\lambda_1^0}{2} \right) - \\ &- K(R) \left(\frac{v_1^0}{R} - \frac{v_1^{0^*}}{2} \right) - K_{11} \left(R \right) + \frac{6e^{\lambda^0}}{R^2} K(R) + \\ &+ \frac{2}{3} \left[24\pi e^{\lambda^0} \left(P^0 + \rho^0 \right) K(R) + R^2 q_1^2 e^{-v^0} \right]. \end{split}$$

В уравнение (29) кроме неизвестной функции $N_l(R)$ входят также функции $P_l(R)$ и $\rho_l(R)$. Чтобы получить окончательный вид уравнения для $N_l(R)$ мы должны $P_l(R)$ и $\rho_l(R)$ выразить через функцию $N_l(R)$. Согласно определению

$$M(P) = \int \frac{dP'}{\rho' + P'}$$

и уравнению состояния $\rho=\rho\left(P\right)$, $M\left(P\right)$ и $\rho\left(P\right)$ являются функциями давления. Следуя принятому нами приближению, разложим эти функции в ряд Тейлора около точки P'=P'' и ограничимся членами порядка β , тогда

$$M\left[P^{0} + \beta \sum_{l=0}^{\infty} P_{l}(R) P_{l}(\gamma)\right] = m(R) + \beta \frac{dM}{dP} \Big|_{\beta=0} \sum_{l=0}^{\infty} P_{l}(R) P_{l}(\gamma), \quad (30)$$

$$\rho \left[P^0 + \beta \sum_{l=0}^{\infty} P_l(R) P_l(\gamma) \right] = \rho^0 + \beta \frac{d\rho^0}{dP^0} \sum_{l=0}^{\infty} P_l(R) P_l(\gamma), \qquad (31)$$

где

$$\left. \frac{dM}{dP} \right|_{\beta=0} = \frac{1}{P^0 + \rho^0}.$$

С другой стороны,

$$M(R, \theta) = m(R) + \beta \sum_{l=0}^{\infty} N_l(R) P_l(\gamma),$$
 (32)

$$\rho(R, \theta) = \rho^0 + \beta \sum_{l=0}^{\infty} \rho_l(R) P_l(\gamma). \tag{33}$$

Сравнивая (30) с (32) и (31) с (33), можно $P_l(R)$ и $\rho_l(R)$ выразить через функцию $N_l(R)$:

$$P_{l}(R) = (P^{0} + \rho^{0}) N_{l}(R),$$

$$\rho_{l}(R) = \frac{d\rho^{0}}{dP^{0}} P_{l}(R) = \frac{d\rho^{0}}{dP^{0}} (\rho^{0} + P^{0}) N_{l}(R).$$
(34)

Подставляя (34) в уравнение (29), для функции $N_l(R)$ окончательно получаем

$$\frac{d^{3}N_{l}}{dR^{3}}+X(R)\frac{dN_{l}}{dR}+Y(R)N_{l}(R)=Z(R)\delta_{l0}+V(R)\delta_{l2}.$$
 (35)

Здесь

$$X(R) = X_1(R) - \frac{8\pi R^2 v_1^0}{\frac{l(l+1)}{2} - 1} (P^0 - \rho^0),$$

$$Y(R) = Y_1(R) - W(R)(P^0 + \rho^0) + 8\pi e^{\lambda^0}(P^0 + \rho^0) \frac{d\rho^0}{dP^0} - \frac{8\pi R^2 v_1^0}{\frac{l(l+1)}{2} - 1} \frac{d}{dR}(P^0 + \rho^0).$$

Таким образом, нахождение внутренних решений вращающихся звездных конфигураций свелось к интегрированию соответствующей сферической задачи для определения ковффициентов, входящих в уравнение (35), и к дальнейшему ее интегрированию.

В общем случае сферическая задача решается численно [4—8]. При решении этих уравнений мы получаем массу $M(R_0)$, радиус R_0 сферической конфигурации, [значения функций h^0 , y^0 , P^0 и ρ^0 при заданном ρ_c . Знание этих функций позволит перейти к интегрированию уравнений (35) со следующими начальными условиями:

$$N_l(0) = 0, l = 0, 2, 4, \cdots$$

Кроме этих начальных условий нам должны быть заданы значения производных этих функций в точке R=0. Однако, вместо значения производных в начале координат, мы имеем логарифмические производные этих функций на границе звезды. Поэтому поступим следующим образом. Неизвестные функции будем искать в виде

$$N_0(R) = N_0(R)$$
, $N_2(R) = B_2 L_2(R) + S(R)$, $N_l(R) = B_l N_l(R)$. (36) Начальные условия для N_0 следующие:

$$N_0(0) = \frac{dN_0(0)}{dR} = 0. (37)$$

Функция $B_2L_2(R)$ есть общее решение однородного уравнения (36) с индексом l=2, S(R) — частное решение неоднородного уравнения с тем же индексом. В центре конфигурации $L_2(R) \sim R^2$, $S(R) \sim R^4$, поэтому имеет место

$$L_2(0) = \frac{dL_1(0)}{dR} = S(0) = \frac{dS(0)}{dR} = 0.$$
 (38)

Что касается функций $L_l(R)$, то, как будет показано ниже, они равны нулю.

3. Определение постоянных, входящих в решения. Значения постоянных, входящих в полученное решение, определяются из условия непрерывности компонент метрического тензора и их первых производных на границе конфигурации. Для записи этих условий необходимо иметь внешнее решение. Оно было найдено с точностью до произвольных постоянных, значения которых должны быть одновременно определены с постоянными, входящими во внутреннее решение. Выпишем решения вне распределения масс [2]:

$$e' = 1 + \frac{\alpha}{R} + \beta \sum_{l=0}^{\infty} A_l \Phi_l(R) P_l(\gamma),$$

$$e^{-\lambda} = 1 + \frac{\alpha}{R} + \beta \sum_{l=0}^{\infty} \left\{ A_l \Phi_l(R) - \frac{24C_1^2}{R^4} \delta_{l0} - \frac{3C_1^2}{R^4} \delta_{l2} \right\} P_l(\gamma), \qquad (39)$$

$$e^{\mu} = R^2 \left[1 + \beta \sum_{l=0}^{\infty} U_l(R) P_l(\gamma) \right], \qquad \omega = \sqrt{\beta} \frac{C_1}{R^3},$$

$$\Phi_l(R) = \frac{1}{R^{l+1}} F(l+1, l-1, 2l+2, -\frac{\alpha}{R}) + \frac{C_1}{R^{l+1}} F(l+1, l-1, 2l+2, -\frac{\alpha$$

 $+\frac{C_1^2}{R^4}\left(\frac{1}{2}+\frac{a}{R}\right)\delta_{l0}+\frac{C_1^2}{2aR^3}\left(\frac{a^2}{R^2}-\frac{a}{R}-2\right)\delta_{l2}$

 $U_l(R) = \int \left\{ -\frac{A_l}{1 + \frac{\alpha}{R}} \cdot \frac{d\Phi_l}{dR} + \frac{3C_1^2}{\frac{l(l+1)}{2} - 1} \right\}$

 $\times \left(\frac{a/R^6}{1+a/R}-\frac{2}{R^5}\right)(\delta_{10}-\delta_{12})\right\}dR.$

тде

-a—гравитационный радиус сферической конфигурации, A_l и C_1 —произвольные постоянные интегрирования, а F(l+1, l-1, 2l+2, -a/R)—гипергеометрическая функция.

Условия сшивки для функции о приводят к уравнениям

$$\frac{C_1}{R_0^3} = DJ(R_0) + Q(R_0),$$

$$-\frac{3C_1}{R_0^4} = DJ_1(R_0) + Q_1(R_0).$$
(40)

Из решения этой системы находим

$$D = -\frac{Q_{1}(R_{0}) + 3\frac{Q(R_{0})}{R_{0}}}{\int_{1}(R_{0}) + 3\frac{J(R_{0})}{R_{0}}},$$

$$C_{1} = \frac{Q(R_{0})\int_{1}(R_{0}) - J(R_{0})Q_{1}(R_{0})}{\int_{1}(R_{0}) + \frac{3J(R_{0})}{R_{0}}} \cdot R_{0}^{3}.$$
(41)

Так как несферичность формы поверхности конфигурации возникает во втором приближении по Ω , то уравнение границы можно записать в виде

$$R(\theta) = R_0 + \beta \sum_{l=1}^{\infty} d_l P_l(\gamma). \tag{42}$$

Значения постоянных d_l можно выразить через B_l , используя условие равенства функции $M(R, \theta)$ нулю на поверхности звезды. Это условие с учетом (36) запишется в виде

$$m(R_0) + \beta \frac{dm(R_0)}{dR} \sum_{l=0}^{\infty} d_l P_l(\gamma) + \beta \left[N_0(R_0) + B_2 L_2(R_0) + S(R_0) \right] P_2(\gamma) + \sum_{l=0}^{\infty} B_l L_l(R_0) P_l(\gamma) = 0.$$

$$(43)$$

Так как $m(R_0) = 0$, то из (43) следует

$$d_{0} \frac{dm(R_{0})}{dR} = -N_{0}(R_{0}), \qquad d_{2} \frac{dm(R_{0})}{dR} = -B_{2}L_{2}(R_{0}) - S(R_{0}),$$

$$d_{1} \frac{dm(R_{0})}{dR} = -B_{1}L_{1}(R_{0}).$$
(44)

Таким образом, для определения формы конфигурации нам необходимо знание значений функций N_l в точке $R=R_0$, а также постоянных B_l . Для определения последних выпишем выражения ν вне и внутри распределения масс

$$\frac{1}{2} \gamma^{\text{BHeIII.}} = \frac{1}{2} \ln \left(1 + \frac{\alpha}{R} \right) + \frac{1}{2} \beta \sum_{l=0}^{\infty} A_l \Phi_l(R) P_l(\gamma),$$

$$\frac{1}{2} \gamma^{\text{BHYT.}} = -m(R) - \beta \left\{ N_0(R) + \left[B_2 L_2(R) + S(R) \right] P_2(\gamma) + (45), + \sum_{l=0}^{\infty} B_l L_l(R) P_l(\gamma) - K(R) (1 - P_2(\gamma)) - C_{1, 0} \right\} + C_0.$$

Требование непрерывности ν и $\frac{d\nu}{dR}$ на границе звезды (42) приводит к следующим соотношениям:

$$C_{0} + \beta \left[C_{1,0} + K(R_{0}) \left(1 - P_{2}(\gamma)\right)\right] = \frac{1}{2} \ln\left(1 + \frac{\alpha}{R_{0}}\right) + \frac{1}{2} \beta \left[\sum_{l=0}^{\infty} \left(A_{l} \Phi_{l}(R_{0}) - \frac{a/R_{0}^{2}}{1 + a/R_{0}}\right) P_{l}(\gamma)\right],$$

$$-\frac{dm(R_{0})}{dR} - \beta \left[\sum_{l=0}^{\infty} d_{l} \frac{d^{2}m(R_{0})}{dR^{2}} P_{l}(\gamma) + \frac{dN_{0}(R_{0})}{dR} + \left(B_{2} \frac{dL_{2}(R_{0})}{dR} + \frac{dS(R_{0})}{dR}\right) P_{2}(\gamma) + \frac{4}{2} \beta \left[\sum_{l=0}^{\infty} d_{l} \frac{dL_{l}(R_{0})}{dR} P_{l}(\gamma) - \frac{dK(R_{0})}{dR} \left(1 - P_{2}(\gamma)\right)\right] = -\frac{1}{2} \frac{a/R_{0}^{2}}{1 + a/R_{0}} + \frac{1}{2} \beta \left[\sum_{l=0}^{\infty} A_{l} \frac{d^{2}\Phi_{l}}{dR} P_{l}(\gamma) - \frac{dR(R_{0})}{2} \sum_{l=0}^{\infty} A_{l} \frac{d^{2}\Phi_{l}}{dR} P_{l}(\gamma)\right].$$

Приравнивая к нулю коэффициенты при одинаковых $P_l(\gamma)$, можно определить все искомые постоянные.

В случае l > 2 для A_l и B_l получаются следующие алгебраические уравнения:

$$\frac{1}{2} A_l \Phi_l(R_0) + B_l L_l(R_0) = 0,$$

$$-\frac{d^{2}m(R_{0})}{dR^{2}}d_{l}-B_{l}\frac{dL_{l}(R_{0})}{dR}-\frac{1}{2}\frac{2\frac{\alpha}{R_{0}^{3}}+\frac{\alpha}{R_{0}^{4}}}{\left(1+\frac{\alpha}{R_{0}}\right)^{2}}d_{l}-\frac{1}{2}\frac{d\Phi_{l}(R_{0})}{dR}A_{l}=0, \quad (47)$$

$$A_{l}\Phi_{l}(R_{0})=\frac{a_{0}/R_{0}^{2}}{1+a/R_{0}}d_{l}.$$

(47) представляет собой систему линейных однородных уравнений для d_l , A_l и B_l , детерминант которой отличен от нуля. Следовательно, она имеет единственное решение $d_l = A_l = B_l = 0$. Итак, наше решение в этом приближении не зависит от полиномов Лежандра с индексом выше двух.

Для l=0 условия, полученные из (46), дают

$$C_{0} = \frac{1}{2} \ln \left(1 + \frac{a}{R_{0}} \right), \quad d_{0} = -\frac{2 \left(1 + \frac{a}{R_{0}} \right) N_{0}(R_{0})}{a / R_{0}^{2}},$$

$$A_{0} = 2 \frac{1}{\frac{d\Phi_{0}(R_{0})}{dR}} \cdot \left[\frac{d}{dR} \left(K(R_{0}) - N_{0}(R_{0}) \right) \right],$$

$$C_{1.0} = \frac{1}{\frac{d\Phi_{0}(R_{0})}{dR}} \cdot \left\{ \Phi_{0}(R_{0}) \left[\frac{dK(R_{0})}{dR} - \frac{dN_{0}(R_{0})}{dR} \right] - \frac{d\Phi(R_{0})}{dR} \left[K(R_{0}) - N_{0}(R_{0}) \right].$$

$$(48)$$

Наконец, для l = 2 следует

$$d_{2} = -2 \frac{1 + a/R_{0}}{a/R_{0}^{2}} [B_{2}L_{2}(R_{0}) + S(R_{0})].$$

$$A_{2} = -2 \frac{K(R_{0}) + S(R_{0}) + B_{2}L_{2}(R_{0})}{\Phi_{2}(R_{0})},$$

$$\Phi_{2}(R_{0}) \left| \frac{dK(R_{0})}{dR} + \frac{dS(R_{0})}{dR} \right| - \frac{d\Phi_{2}(R_{0})}{dR} \{K(R_{0}) + S(R_{0})\}$$

$$L_{2}(R_{0}) \frac{d\Phi_{2}(R_{0})}{dR} - \Phi_{2}(R_{0}) \frac{dL_{2}(R_{0})}{dR}$$

$$(49)$$

Таким образом, интегрируя уравнения (15) и (35) с начальными условиями (25), (37) и (38) от нуля до радиуса R_0 соответствующей сферической конфигурации, мы определим все постоянные, входящие во внутренние и внешние решения уравнений Эйнштейна. Внешние решения определяются формулами (39), а внутренние будут

$$e^{-\lambda} = e^{-\lambda^{\circ}} \{ 1 + \beta [f_{0}(R) + f_{2}(R)P_{2}(\gamma)] \},$$

$$e^{\gamma} = e^{\gamma^{\circ}} \{ 1 + \beta [\Phi_{0}(R) + \Phi_{2}(R)P_{2}(\gamma)] \},$$

$$e^{\lambda} = R^{2} \{ 1 + \beta [U_{0}(R) + U_{2}(R)P_{2}(\gamma)] \},$$

$$\omega = \sqrt{\beta} \{ DJ(R) + Q(R) \},$$
(50)

где функции Φ_0 и Φ_2 выражаются через найденные функции N_0 и N_2 с помощью формул (16) и (36), f_0 и f_2 — с помощью формул (27), (34) и (36), а U_0 и U_2 определяются из (21).

Авторы благодарны академику В. А. Амбарцумяну за ценные замечания и профессору Г. С. Саакяну за многочисленные обсуждения.

Ереванский государственный университет Бюраканская астрофизическая обсерватория

ON THE INTERNAL SOLUTION OF STATIONARY AXIAL-SYMMETRICAL GRAVITATIONAL FIELDS

D. M. SEDRAKIAN, E. V. CHUBARIAN

A method for obtaining the internal solution of the Einstein equations for stationary axial-symmetrical gravitational fields in Ω^2 approximation (Ω is the angular velocity of rotation) is devised. The problem is reduced to the integration of ordinary differential equations with initial conditions.

This method is applicable for any equation of state.

ЛИТЕРАТУРА

- 1. J. B. Hartle, D. H. Sharp, Ap. J., 147, 317, 1967.
- 2. Д. М. Седракян, Э. В. Чубарян, Астрофизика, 4, 239, 1968,
- 3. J. R. Oppenheimer, G. H. Volkoff, Phys. Rev., 55, 374, 1939.
- 4. В. А. Амбарцумян, Г. С. Саакян, Астрон. ж., 38, 785, 1961.
- В. А. Амбарцумян, Г. С. Саакян, Астрон. ж., 38, 1016, 1961.
- 6. Г. С. Саакян, Ю. Л. Вартанян, Сообщ. Бюр. обс., 33, 55, 1963.
- 7. Г. С. Саакян, Ю. Л. Вартанян, Астрон. ж., 41, 193, 1964.
- 8. Г. С. Саакян, Э. В. Чубарян, Сообщ. Бюр. обс., 34, 99, 1963.