АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 4

МАЙ, 1968

ВЫПУСК 2

НЕЙТРОННЫЕ КОНФИГУРАЦИИ ПО ОБОБЩЕННОЙ ТЕОРИИ ГРАВИТАЦИИ НЬЮТОНА

Г. С. СААКЯН, М. А. МНАЦАКАНЯН Поступила 10 еюля 1967

Рассчитаны нейтронные конфигурации по обобщенной теории гравитации Ньютона. Кривая зависимости массы M (и раднуса R) от плотности ρ_0 в центре состоит из двух существенно различных по характеру ветвей. Одна из них представляет конфигурации с M/R < 0.45 и мало отличается от соответствующей кривой по теории с постоянной k (k—гравитационная "постоянная"). Вторая ветвь представляет конфигурации с M/R > 0.3. Ей принадлежат конфигурации с любым значением массы. На каждой ветви параметры конфигурации являются однозначной функцией ρ_0 .

Показано существование статических сверхплотных конфигураций с массами порядка галактической.

В нашей предыдущей работе [1] рассматривался ньютоновский вариант обобщенной теории гравитации. В предположении, что гравитационная "постоянная" k является функцией распределения масс (эту функцию ниже мы будем называть гравитационным скаляром), из вариационного принципа были получены уравнения движения и поля. Были найдены внутренние решения и интегральные характеристики моделей равновесных сферических конфигураций, состоящих из несжимаемой материи. Функция k(r) для всех конфигураций имеет следующее поведение. В центре конфигурации k(0) = 0. При удалении от центра она монотонно растет и на больших расстояниях асимптотически приближается к ньютоновской гравитационной постоянной $k(\infty) = k_0 = 1$. Расстояния, на которых k(r) заметно отличается от единицы, порядка гравитационного радиуса конфигурации. Последнее обстоятельство существенно сказывается на значениях параметров конфигураций, для которых геометрический радиус R и гравитационный $R_g = 2M$ становятся сравнимы друг с другом, то есть при плотностях порядка ядерной. Так, при больших значениях отношения $M R \equiv w \gg 1$ масса M такой конфигурации и масса M_N , вычисленная по теории с постоянной $k(r) = k_0$, связаны соотношением $M M_N \approx w^3$. Эти результаты настолько интересны, что побуждают нас на исследование внутренних решений для более или менее реальных моделей звезд. При этом из-за сложности задачи мы вынуждены пока ограничиться рассмотрением сравнительно простых случаев.

В настоящей статье исследуются модели равновесных сферических конфигураций, состоящих из вырожденного идеального газа нейтронов. Параметры таких конфигураций ранее были рассчитаны на основе теории тяготения Ньютона—Эйнштейна [2—5]. Как известно, массы таких конфигураций порядка массы Солнца, а радиусы порядка 10 км. Совершенно иного характера результаты получаются в рамках обобщенной теории. Здесь, в принципе, можно построить модели сверхплотных конфигураций с массами порядка галактики и даже большими.

Нам кажется, что полученные здесь результаты имеют непосредственное отношение к космогонической концепции В. А. Амбарцумяна. В ней утверждается, что масса центрального ядра некоторых галактик состоит не из звездного населения, а, скорее, сосредоточена в одном массивном теле, находящемся в особом состоянии (так называемые "дозвездные тела" Амбарцумяна). Далее, утверждается, что временами в результате мощных космических взрывов из этих "дозвездных тел", то есть из активных ядер галактик, извергаются в мировое пространство огромные массы вещества, из которых в дальнейшем формируются звезды и межзвездный газ. Предполагается, что таково происхождение звездного населения и диффузного вещества галактик. А в каком состоянии находится вещество в дозвездных телах, каковы значения его плотности? Новая концепция пока что не дала определенного ответа на эти вопросы.

Не исключена возможность нарушения некоторых из фундаментальных законов физики в этих телах^{*}. Какова точка зрения современной теории в вопросе величины плотностей в дозвездных телах? По обычной теории гравитации в природе не могут продолжительное время существовать тела с массами, значительно превышающими массу Солнца; это означает, что вещество в дозвездных телах должно быть разреженным [6]. Что касается обобщенной теории гравитации, то она допускает наличие очень больших плотностей, вплоть до ядерных.

• В. А. Амбарцумян, частное сообщение.

НЕИТРОННЫЕ КОНФИГУРАЦИИ

2. По обобщенной теории гравитации Ньютона параметры стационарных холодных звездных конфигураций определяются следующей системой уравнений [1]

$$m' = 4\pi r^{2} (r),$$

$$P' = -\frac{\rho km}{r^{2}},$$
(1)

$$k'' + \frac{2}{r}k' - \frac{3}{2}\frac{k'^2}{k} = \frac{1}{2\zeta}\frac{k^3m^2}{r^4}$$

Здесь p-плотность массы, P-давление, k(r) - гравитационный скаляр, $\zeta = -30$.

Мы пользуемся системой единиц $c = k_0 = 1$, $m_n^4 c^5 (32\pi^2 h^3) = 1.4\pi$. К этим уравнениям следует добавить уравнение состояния $\rho = \rho(P)$.

Для конфигураций, состоящих из вырожденного идеального нейтронного газа

$$\rho = \frac{1}{4\pi} (\operatorname{sh} t - t), \quad P = \frac{1}{12\pi} \left(\operatorname{sh} t - 8 \operatorname{sh} \frac{t}{2} + 3t \right), \quad (2)$$

$$t = 4 \operatorname{arsh} \frac{(3\pi^2)^{1/4} h N^{1/4}}{m_n c},$$
 (3)

h — постоянная Планка, деленная на 2π , m_n и N масса и плотность нейтронов. Подставляя в (1) выражения для P и μ из (2), имеем

$$m' = r^{2} (\operatorname{sh} t - t),$$

$$t' = -\frac{3}{8} \frac{km}{r^{2}} \frac{\operatorname{sh} t - t}{\operatorname{sh}^{4} \frac{t}{4}},$$

$$k'' + \frac{2}{r} k' - \frac{3}{2} \frac{k'^{2}}{k} = \frac{1}{2\zeta} \frac{k^{3}m^{2}}{r^{4}}.$$
(4)

Получаемое отсюда внутреннее решение k(r) должно быть сшито с внешним решением

$$k(r) = \frac{r^{2}}{r^{2} + 2 \alpha M r + \beta M^{2}}, \qquad (5)$$

$$\alpha = \frac{1}{3-2\zeta}, \qquad \beta = \alpha^3 - \frac{1}{4\zeta}, \quad \zeta = -30,$$
 (6)

с соблюдением непрерывности функций k(r) и k'(r). Мы имеем дело

с граничной задачей: на поверхности r = R конфигурации из (5) получаются следующие условия для уравнений (4)

$$k(R) = \frac{1}{1 + 2aw + \beta w^2}, \quad k'(R) = \frac{2w(a + \beta w)}{R(1 + 2aw + \beta w^2)^2}, \quad t(R) = 0, \quad (7)$$

а в центре звезды при r = 0 должно выполняться условие отсутствия точечной массы

$$m(0) = 0.$$
 (8)

При этом полная масса M определяется как M = m(R). Систему уравнений (4) удобно интегрировать от поверхности, предварительно перейдя к новым переменным

$$r = My, \quad m = M \cdot \mu(y). \tag{9}$$

В этих переменных уравнения (4) записываются в виде

$$\mu' = M^{2}y^{2} (\operatorname{sh} t - t),$$

$$t' = -\frac{3}{8} \frac{k\mu}{y^{3}} \frac{\operatorname{sh} t - t}{\operatorname{sh}^{4} \frac{t}{4}},$$

$$(10)$$

$$T' + \frac{2}{y}k' - \frac{3}{2} \frac{k'^{2}}{k} = \frac{1}{2\zeta} \frac{k^{3}\mu^{4}}{y^{4}},$$

со следующими граничными условиями: в центре звезды

$$(0) = 0,$$
 (8')

и на поверхности при y = Y = 1/w

$$\mu(Y) = 1, \quad k(Y) = \frac{1}{1 + 2 \alpha w + \beta w^2}, \quad k'(Y) = \frac{2w (\alpha + \beta w)}{(1 + 2 \alpha w + \beta w^2)^3}.$$
(11)

Преимущество преобразования (9) заключается в следующем. Все условия (11) на поверхности, как и сама поверхность определяются заданием только одного параметра w, в то время как условия (7) определяются двумя величинами M и R, которые, как известно, не независимы друг от друга. Кстати, здесь мы еще раз убеждаемся в том, что сферические конфигурации вырожденных масс характеризуются одним параметром, в качестве которого можно взять w = M R.

Значение же массы M, входящей в первое уравнение системы (10), должно быть выбрано так, чтобы удовлетворить требованию в центре $\mu(0) = 0$.

3. Численное интегрирование системы дифференциальных уравнений (10) проводилось методом Рунге-Кутта на электронно-вычислительной машине "Наири". По заданному значению *w* вычислялись условия (11) на поверхности конфигурации. Поскольку в правую часть первого уравнения системы (10) входит величина M^2 и для решения этой системы необходимо знание численного значения массы M конфигурации, то задача, в сущности, решалась методом последовательных приближений. Для некоторого значения M интегрирование проводилось от поверхности y = Y к центру до расстояния y_0 , где функция t(y) достигала насыщения с точностью до 0.1°_0 . Считая внутри радиуса y_0 функцию t(y) постоянной и равной $t(y_0)$, вычислялась "остаточная масса" v_0 по формуле $v_0 = M^2 [\operatorname{sh} t(y_0) - t(y_0)] y_0^3$ 3, которая сравнивалась с массой $\mu(y_0)$, полученной по ходу интегрирования. Мы требовали выполнения условия

$$|\mu(y_{0}) - \nu_{0}| < 0.001 \tag{8''}$$

(напомним, что полная масса конфигурации в этих переменных равна $\mu(Y) = 1$). Очевидно, что (8") с определенной точностью эквивалентно условию (8'). Если (8") не выполнялось, то интегрирование производилось заново, причем коэффициент M^2 в правой части первого уравнения системы (10) заменялся величиной

$$M^{2} \to M^{2} \frac{1 - v_{0}}{1 - \mu(y_{0})}$$
 (12)

Можно показать, что процесс последовательных интегрирований уравнений (10) с применением формулы (12) приводит в пределе к значению M^2 , для которого выполняется услсвие (8'). Условие (8") определяло массу M с точностью до двух цифровых знаков в области $w \approx 1$ и $t \leq 1$, до трех знаков — при $w \gg 1$ и до четырех для $w \approx 1$ и $t \gg 1$. Таким образом масса конфигураций вычислена с точностью до нескольких процентов.

Результаты численных расчетов приведены в таблице и на рисунках 1—5. На рис. 1 изображена зависимость центрального значения параметра $t(0) \equiv t_0$ и массы M конфигураций от параметра w = M R. Обсудим сначала кривую $t_0(w)$. Она состоит из двух ветвей, соответствующих двум различным по своему характеру решениям системы уравнений (10). На левой ветви с ростом w функция $t_0(w)$ монотонно растет, однако в области $0.15 \le w \le 0.45$ она многозначна. Обратная функция $w(t_0)$ является однозначной. Пунктирная линия 1, сливающаяся при $w \le 0.3$ со сплошной, представляет конфигурации, рассчитанные по теории с постоянной $k(r) = k_0$ [3]. Она, сильно осциллируя при больших значениях t_0 , удаляется в бесконечность с асимптотой $w(\infty) = 0.3013$.

Таблица 1

ПАРАМЕТРЫ НЕЙТРОННЫХ КОНФИГУРАЦИЙ ПО ОБОБЩЕННОЙ ТЕОРИИ ГРАВИТАЦИИ НЬЮТОНА

Ветвь конфигураций с "нормальным" значением отношения M/R				Вствь конфигураций с "аномальным" значе- нием отношения <i>М R</i>			
t (0)	Масса М в единицах 9.29 М	Радиус R в единицах 13.7 км	M/R	t (0)	Масса М в единицах 9.29 М⊙	Раднус <i>R</i> в единицах 13.7 км	MIR
1.0	0.0354	1.560	0.0227	0.342	3.2.107	3200	101
2.2	0.1005	1.005	0.1	1.743	3.08.104	61.6	500 -
3.27	0.1523	0.761	0.2	2.83	347.2	17.36	200
3.74	0.169	0.676	0.25	4.18	593.6	5.936	100
4.26	0.181	0.603	0.3	5.18	218.6	3.123	70
5.55	0.1852	0.463	0.4	6.44	77.24	1.545	50
5.93	0.181	0.431	0.42	8.5	20.75	0.593	35
8.41	0.1265	0.301	0.42	11.11	4.46	0.178	25
8.81	0.115	0.287	0.4	13.55	1.266	0.0633	20
10.35	0.0872	0.291	0.3	22.7	$1.26 \cdot 10^{-2}$	$1.26 \cdot 10^{-3}$	10
11.96	0.073	0.365	0.2	31.2	1.72.10	$3.44 \cdot 10^{-5}$	5
12.81	0.07386	0.434	0.17	33.5	5.75.10	$1.425 \cdot 10^{-6}$	4
14.0	0.0802	0.535	0.15	35.8	$1.75 \cdot 10^{-5}$	$5.83 \cdot 10^{-6}$	3
		-		38.4	4.83.10	$2.41 \cdot 10^{-6}$	2 .
				41.3	$1.197 \cdot 10^{-6}$	1.197.10-6	1
				41.85	9.1.10 ⁻⁷	1.137.10 ⁻⁶	0.8

Расчеты параметров конфигураций, принадлежащих этой ветви, со эначениями $t_0 > 14$ были связаны с большими затруднениями и не проводились.

Предположительное поведение $t_0(w)$ этой части кривой изображено пунктирным продолжением 2 сплошной линии. Существенных отклонений ее от линии 1 мы не ожидаем, поскольку в этой области $w \sim 0.3$ и, как известно, значения $w \ll 1$ приводят к совпадению теорий с переменной и постоянной k(r). Правая ветвь кривой $t_0(w)$, расположенная в области $0.3 < w < \infty$, изображает монотонно убывающую функцию $t_0(w)$, стремящуюся к нулю при $w \to \infty$. Здесь часть кривой, начерченная пунктиром, также не была рассчитана. Она соответствует значениям 0.3 < w < 0.8. Эта ветвь не имеет своего аналога в теории

186

Рис. 1. Зависимость параметра t_0 (определение t дано в (3)) и массы M нейтронных конфигураций от параметра w = M/R, где R—радиус конфигурации. Если Алину отрезка $[1, \infty 1]$ принять за единицу, то для значения w < 1 (аналогично и M) от отметки 1 в сторону отметки 0 откладывается отрезок $1-w^{\log 2}$, а для w > 1 — отрезок $1-w^{-\log 2}$ в сторону отметки ∞ . Масса измерена в единицах 9.29 M_{\odot} . Кривые $t_0(w)$ и M(w) состоят из двух разных ветвей. Левой ветви кривой $t_0(w)$, соответствует лежащая под ней кривая M(w). Правой ветви $t_0(w)$ соответствует пересекающаяся-с ней правая ветвь M(w). Разветвляющаяся пунктирная линия I изображает результаты теории с постоянным k. При $w \leq 0.3$ оба варианта теории дают совпадающие результаты. Часть кривой 2, показанная пунктиром, не была рассчитана.

Переходим к рассмотрению кривых, изображающих зависимость M(w), массы конфигураций от параметра w. Она тоже состоит из двух разных ветвей. Левая—соответствует левой ветви кривой $t_0(w)$ для нее $w \leq 0.45$. Пунктирные линии 1 и предполагаемая 2 представляют теории с постоянной и переменной k(r) соответственно. При

малых w они переходят в одну сплошную линию. На этой ветви при $w \geq 0.15$ как функция M(w), так и обратная w(M) являются многозначными.

Особый интерес представляет правая ветвь кривой M(w), не имеющая аналога в ньютоновской теории. Здесь функция M(w) во всей области $0.3 < w < \infty$ является монотонно растущей. При $w \gg 1$ масса M растет пропорционально w^{η_1} , а при $w \lesssim 1$ уменьшается обратно пропорционально $\sqrt{\rho_0}$, где $\rho_0 = \rho(t_0)$ — значение плотности в центре конфигурации.

На рис. 2 приведен график зависимости $M(t_0)$. В соответствии с предыдущим рисунком, здесь также кривая состоит из двух ветвей.

Рис. 2. Зависимость массы нейтронных конфигураций от параметра t_0 . Кривая M(t) состоит из двух разных ветвей. Ветвь конфигураций с массами порядка солнечной имеет свой аналог в обычной теории гравитации. Здесь $w=M R \leq 0.45$. Вторая ветвь представляет конфигурации с любыми значениями массы, для них w>0.3. Числа при точках на кривых показывают значение w для соответствующей конфигурации. Принцип построения шкалы по обенм осям тот же, что и на рис. 1. Масса измерена в единицах 9.29 M_{\odot} .

188

Одна из них представляет статические сверхплотные конфигурации с любым значением массы. Вторая ветвь изображает конфигурации с массами порядка массы Солнца. Продолжение этой кривой (пунктирная линия) при $t_0 > 14$ — это та часть, которая не была рассчитана. Кривая $M(t_0)$ по теории с постоянной k(r) на этом рисунке не приводится. Она расположена очень близко к "ветви солнечных масс". При некоторых точках на кривых даны значения w = M/R для соответствующих конфигураций.

На рис. З представлена зависимость $R(t_0)$. Здесь также имеются две ветви, соответствующие конфигурациям с массами порядка Солнца и с любыми массами.

t(0)

Рис. 3. Зависимость радиуса нейтронных конфигураций R от параметра t_0 . Раднус измерен в единицах 13.7 км. Принцип построения шкалы по обеим осям тот же, что и на предыдущих рисунках.

На рис. 4 приводятся графики зависимостей функции t от расстояния r/R до центра для конфигурации со значениями w, отмечен-

Г. С. СААКЯН, М. А. МНАЦАКАНЯН

ными на кривых. Мы замечаем, что в случае $w \leq 1$ параметр *t* при удалении от центра падает очень быстро, а при больших значениях *w* кривые становятся пологими. При очень больших *w*, чему соответствуют конфигурации с большими массами, вещество конфигурации фактически становится несжимаемым. Эта особенность обусловлена ослаблением гравитации при $w \gg 1$.

Рис. 4. График функции t(r/R). По оси абсцисе отложено r/R, где R—радиус конфигурации, r—расстояние от центра.

Наконец, на рис. 5 представлена знакомая нам из предыдущей работы зависимость k = k(r) для ряда конфигураций. Числами на кривых указана величина w для рассматриваемых конфигураций.

4. Для параметров *M*, *R* и t₀, характеризующих конфигурации, можно получить приближенные аналитические выражения, справедливые при малых и очень больших значениях *w*.

Сперва рассмотрим случай очень больших w. Из предыдущего изложения мы уже знаем, что с возрастанием w параметр t_0 уменьшается и одновременно кривая функции t(r/R) становится пологой. Это дает возможность найти хорошие оценки для параметров звезд. При достаточно больших w, когда $t_0 < 1$ (это имеет место при $w \ge 10^4$), можно, разложив sh t в ряд по степеням t, первые два уравнения (10) написать в виде

$$\mu' = \frac{1}{6} M^{2} y^{2} t^{3}$$

$$t' = -16 \frac{k \mu}{t y^{2}}$$
(13)

Функцию k(y) можно заменить на y^2/β (см. формулу (31) [1]). Тогда уравнения (13) удовлетворяют следующему преобразованию подобия

$$y \rightarrow zy, \quad M \rightarrow z^{-n}M, \quad t \rightarrow z^{n}t, \quad \mu \rightarrow \mu,$$

откуда следует, что

r/R

Рис. 5. Зависимость гравитационной "постоянной" (гравитационного скаляра) k(r/R) от отношения r/R в системе единиц $c=k_0=1$.

Для определения ковффициентов втих пропорциональностей поступим следующим образом. Для средних значений величин, входящих в (13), напишем:

$$\overline{y} \approx 1/(2w), \quad \overline{y^2} \approx 1/(4w^2), \quad \overline{\mu(y)} \approx 1/2, \quad \overline{t(y)} \approx t_0/2,$$

$$\overline{\mu'(y)} \approx \mu(Y)/Y = w, \quad \overline{t'(y)} \approx -t_0 w, \quad \overline{t^3(y)} \approx t_0^3/8, \quad (14)$$

$$\overline{k(y)} \approx k(Y)/2 \approx -2\zeta/w^3.$$

Выражение для k(y) получено из (11) с учетом (7). Если теперь в (13) истинные величины заменить их средними значениями (14), то получим

$$t_0 \approx \frac{C_1}{\sqrt{w}}, \quad M \approx C_2 w^{\gamma_1}, \quad R \approx C_2 w^{\varphi_1}, \tag{15}$$

со значениями $C_1 \approx 60$ и $C_2 \approx 0.03$, неплохо согласующимися с результатом численного интегрирования $C_1 = 34.2$ и $C_2 = 0.0325$. Таким образом, мы видим, что при очень больших значениях w параметр t(0) обратно пропорционален \sqrt{w} , а масса пропорциональна w^{γ_1} .

Из (15) можно получить зависимость массы и радиуса от параметра to

$$M \approx 3.3 \cdot 10^6 t_0^{-9/3}, \qquad R \simeq 860 t_0^{-1/3},$$

В случае $w \ll 1$ функция k(y) заменяется на постоянную $k_0 = 1$, и легко показать, что

 $M \sim t_0^{*}, \quad R \sim t_0^{-1}, \quad w \sim t_0^2.$

Основным результатом настоящей работы является следующее. Показано существование второй ветви кривой зависимости массы и радиуса (рис. 2 и 3) от плотности в центре. На этой ветви масса равновесного небесного тела может иметь любое значение от сколь угодно малого до сколь угодно большого. При этом возможны сверхплотные конфигурации с массами порядка галактической. Напомним, что по альтернативной теории гравитации сверхплотные конфигурации могут иметь только массы порядка солнечной. Таким образом, получен результат, который рано или поздно можно будет проверить астрономическими наблюдениями и тем самым решить вопрос о правильности новой теории.

В заключение авторы выражают благодарность академику В. А. Амбарцумяну за многочисленные стимулирующие обсуждения. Мы благодарны также нашим коллегам Ю. Л. Вартаняну, Д. М. Седракяну, Э. В. Чубаряну, В. В. Папояну и Р. М. Авакяну за проявленный интерес к работе. Мы весьма признательны директору ВЦ АН АрмССР А. В. Петросяну и зав. сектором программирования А. Г. Пилипосяну, любезно предоставившим в наше распоряжение электронно-вычислительную машину "Наири".

Ереванский государственный университет Бюраканская астрофизическая обсерватория

THE NEUTRON CONFIGURATIONS ACCORDING TO THE GENERALIZED NEWTONIAN THEORY OF GRAVITY

G. S. SAHAKIAN, M. A. MNATSAKANIAN

The calculations of neutron configurations based on the generalized Newtonian theory of gravity show that degenerate superdanse neutron stars of very large masses in a hydrostatic equilibrium can exist.

ЛИТЕРАТУРА

Г. С. Саакян, М. А. Мнацаканян, Астрофизика, 3, 103, 1967.
 J. R. Oppenheimer, G. M. Volkoff, Phys. Rev., 55, 374, 1939.
 B. А. Амбарцумян, Г. С. Саакян, Астрон. ж., 38, 1016, 1961.
 Г. С. Саакян, Астрон. ж., 39, 1014, 1952.

5. Г. С. Саакян, Ю. Л. Варданян, Астрон. ж., 41, 193, 1964.

6. Г. С. Саакян, Ю. Л. Варданян. Астрофизика. 3, 503, 1967.