АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 4

ФЕВРАЛЬ, 1968

выпуск 1

краткие сообщения

О НЕСТАЦИОНАРНОЙ ДИФФУЗИИ ИЗЛУЧЕНИЯ В ГАЗЕ

Решение ряда астрофизических задач связано с нахождением характеристик нестационарного поля излучения в среде. В работах [1—5] были развиты методы, позволившие дать точные решения некоторых задач. Эти решения даже в простейших случаях (например, в случае одномерной и однородной среды) имеют весьма сложный вид. Повтому большой интерес должны представлять результаты, касающиеся структуры решения при возможно более общих предположениях. В настоящей заметке обсуждаются некоторые из таких результатов.

I. Рассмотрим среду, занимающую объем произвольной формы. Вероятность выживания кванта при однократном рассеянии обозначим через λ . Сначала будем предполагать, что $\lambda=$ const. Кроме того, мы считаем, что среднее время пребывания кванта в поглощенном состоянии t_1 гораздо больше среднего времени пребывания в пути между рассеяниями. Введем безразмерное время $u=t/t_1$ и обозначим через $p(A, u, \lambda) du$ вероятность того, что квант, поглощенный в точке A, выйдет из среды в интервале времени между u и u+du.

Как легко видеть, функция $p(A, u, \lambda)$ может быть представлена в виде

$$p(A, u, \lambda) = \sum_{1}^{\infty} p_{k}(A, \lambda) \omega_{k}(u), \qquad (1)$$

где $p_k(A, \lambda)$ — вероятность выхода из среды после k рассеяний кванта, поглощенного, в точке A; $\omega_k(u) du$ — вероятность того, что квант,

испытавший k рассеяний, затратит на это время, заключенное в ин-

тервале [u, u+du].

Таким образом, временная зависимость определяется функцией $\omega_k(u)$, которая не зависит от формы объема, занимаемого средой, и, как будет показано ниже, всегда может быть легко найдена.

II. Пусть $p(A, \lambda)$ обозначает вероятность выхода кванта из среды после любого числа рассеяний. Мы имеем:

$$p(A, \lambda) = \sum_{k=1}^{\infty} p_{k}(A, \lambda) = \sum_{k=1}^{\infty} \lambda^{k} p_{k}(A, 1).$$
 (2)

Далее, обозначим через f(u) дифференциальную функцию распределения времени пребывания кванта в поглощенном состоянии при однократном рассеянии. Так как общее время пребывания кванта в поглощенном состоянии при k рассеяниях есть сумма k независимых случайных величин, каждая из которых имеет функцию распределения f(u), то, согласно известной теореме о характеристических функциях,

$$\overline{\omega}_{k}(s) = [\overline{f}(s)]^{k}, \tag{3}$$

где

$$\overline{\omega}_{k}(s) = \int_{0}^{\infty} e^{-su} \omega_{k}(u) du, \qquad \overline{f}(s) = \int_{0}^{\infty} e^{-su} f(u) du \qquad (4)$$

— есть преобразования Лапласа от функций $\omega_k(u)$ и f(u).

Применяя к (1) преобразование Лапласа по и и учитывая равенства (2) и (3), получаем

$$\overline{p}(A, s, \lambda) = \sum_{1}^{\infty} p_{k}(A, \lambda) [\overline{f}(s)]^{k} = \sum_{1}^{\infty} [\lambda \overline{f}(s)]^{k} p_{k}(A, 1).$$
 (5)

Сравнивая (2) и (5), находим

$$\overline{p}(A, s, \lambda) = p(A, \lambda \overline{f}(s)). \tag{6}$$

Формула (б) показывает, что для того, чтобы получить преобразование Лапласа от функции $p(A, u, \lambda)$, надо в решении стационарной задачи $p(A, \lambda)$ заменить λ на $\lambda \overline{f}(s)$. Этот результат был получен впервые И. Н. Мининым [3], применившим преобразование Лапласа непосредственно к уравнениям переноса.

Из приведенного выше вывода видно, что возможность замены $\lambda \to \lambda \overline{f}$ (s) обусловлена в данном случае двумя причинами: a) времена

пребывания кванта в поглощенном состоянии при рассеяниях являются независимыми случайными величинами; б) эти случайные величины имеют одну и ту же функцию распределения.

Функция $\omega_k(u)$ для любого конкретного вида f(u) должна находиться из соотношения (3).

III. Рассмотрим наиболее важный в теории нестационарного поля излучения случай, когда

$$f(u)=e^{-u}. (7)$$

Тогда из (3) находим, что

$$\omega_{k}(u) = e^{-u} \frac{u^{k-1}}{(k-1)!}$$
 (8)

С учетом этого выражения формула (1) принимает вид

$$p(A, u, \lambda) = \frac{e^{-u}}{u} \sum_{1}^{\infty} \frac{p_k(A, \lambda u)}{(k-1)!}$$
 (9)

Поскольку сумма в правой части (9) зависит от произведения λu , получаем следующий принцип подобия:

$$p(A, u, \lambda) = \frac{\lambda}{\lambda_1} e^{-u\left(1-\frac{\lambda}{\lambda_1}\right)} p\left(A, \frac{\lambda}{\lambda_1} u, \lambda_1\right). \tag{10}$$

Таким образом, достаточно знать функцию $p(A, u, \lambda)$ лишь при одном значении λ , например, при $\lambda = 1$. После этого простое соотношение (10) позволяет определить $p(A, u, \lambda)$ для всех значений λ .

IV. Обратимся к случаю, когда λ есть произвольная заданная функция координат точек внутри среды. Представим $\lambda(A)$ в виде

$$\lambda(A) = \lambda_{s}g(A), \tag{11}$$

где λ_{\bullet} — некоторая постоянная. Вероятность выхода кванта из среды мы будем рассматривать как функцию параметра λ_{\bullet} . Очевидно,

$$p(A, \lambda_{\bullet}) = \sum_{1}^{\infty} p_{k}(A, \lambda_{\bullet}) = \sum_{1}^{\infty} \lambda_{\bullet}^{k} p_{k}(A, 1), \qquad (12)$$

поэтому все приведенные выше соотношения будут справедливы и для случая неоднородной среды, если заменить в них λ на λ_{\bullet} . В частности, если выполняется закон (7), соотношение (10) связывает функции $p(A, u, \lambda_{\bullet})$ для класса функций $\lambda(A)$, отличающихся на постоянный множитель.

On the nonstationary diffusion of radiation in gas. The structure of the functions characterizing a nonstationary field of radiation has been studied. The principle of similarity, which permits to reduce the solution of a vast class of problems to the solution of a special case for only one value of the scattering albedo is given.

15 ноября 1967
Бюраканская астрофизическая обсерватория

в. ю. теребиж

AUTEPATYPA

1. В. В. Соболев, Астрон. ж., 29, 406, 517, 1952.

- 2. В. В. Соболев, Перенос лучистой энергии в атмосферах звезд и планет, ГТТИ, М., 1956.
- 3. И. Н. Минин, Вестник АГУ, № 13, 137, 1959.

4. И. Н. Минин, ДАН СССР, 154, 1059, 1964.

5. M. Wing, An Introduction to Transport Theory, New York, 1962.

новая переменная типа и близнецов

При просмотре снимков, полученных с объективной призмой, установленной на 40'' Шмидт-телескопе, была обнаружена вспышка не зарегистрированной в каталогах звезды, имеющей следующие координаты: $\alpha_{1950} = 8^{\rm h}49^{\rm m}9$, $\delta_{1950} = 58\,00$. Положение этой звезды отмечено на приведенных репродукциях области вокруг нее, сделанных со снимков, полученных как в максимуме, так и в минимуме блеска звезды.

Область, где находится эта эвезда, фотографировалась два разаодин за другим— с расширением и без расширения спектра. Яркость ее на обоих этих снимках порядка 10^m 5, а на картах Паломарского атласа неба 16^m , откуда следует, что амплитуда вспышки не менее 5^m 5. Оценки яркостей производились путем сравнения изображений вспыхнувшей звезды с изображениями лежащих недалеко от нее звезд площадки SA-12.

Вышеупомянутые снимки были получены 21 декабря 1965 года, а вспышка звезды на них была обнаружена несколько позже. Повтому новый снимок этой области удалось получить лишь спустя месяц — 20 января 1966 года, на котором рассматриваемая звезда оказалась в минимуме блеска (~16^m).