АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР АСТРОФИЗИКА

TOM 3

АВГУСТ, 1967

выпуск з

СПЕКТРОФОТОМЕТРИЯ F-ЗВЕЗД. II. АТМОСФЕРЫ 41 Суд и у Her

Т. А. КИППЕР

Поступила 7 апреля 1967 Исправлена 15 июня 1967

В работе оцениваются некоторые параметры атмосфер двух F-звезд (41 Суд и v Her). Для анализа используется метод кривых роста на основании теоретической кривой роста Уизольда.

Найдено, что температура возбуждения зависит от потенциала возбуждения, но микротурбулентная скорость остается константной.

Определены температуры конизации и электронные давления.

Определено относительное содержание элементов. Содержание элементов не отличается от солнечного.

К настоящему времени имеется весьма мало работ по F-звездам, выполненных с высокой дисперсией. В этом спектральном классе физическое блендирование линий еще не так серьезно как в звездах класса G и позже, повтому с высокой дисперсией удается разрешить большое количество бленд. Настоящая статья основана на спектрограммах со сравнительно высокой дисперсией (4 и 8 Å/мм). В статье [1] опубликованы эквивалентные ширины более 2000 линий двух звезд — 41 Cyg (F2—4 I_b) и v Her (F2 II—III). Наблюдения покрывают область 33700—4900. В настоящей статье проведен анализ их атмосфер методом кривых роста.

1. Кривые роста. В литературе предложено довольно много различных вариантов кривых роста. Все они сравнительно мало отличаются аруг от друга. Некоторые авторы считают, что для разных спектральных типов звезд надо выбрать разные типы кривых роста. Однако о преимуществе одной кривой перед другими можно строго су-

Т. А. КИППЕР

дить лишь на основании моделей атмосфер, но тогда отпадает вообще потребность в употреблении такого грубого метода. Большее влияние на результаты, чем выбор типа кривой роста, имеют ошибки в определении сил осцилляторов и эквивалентных ширин. Интересно, что Хуан [2] получил из общих принципов усреднения физических условий в атмосферах звезд, что элементарные кривые роста Унзольда и Менвеля являются одними из лучших среди предложенных.

В настоящей статье использовалась кривая роста Унзольда [3], которая основывается на интерполяционной формуле Миннаэрта

$$R_{v} = \left(\frac{1}{\tau_{v}} + \frac{1}{R_{c}}\right)^{-1}$$
(1)

Абсциссой кривой роста Унзольда служит величина

$$\lg D = \lg \frac{c}{2 \bar{R}_c v_0} + \lg \frac{2 \sqrt{\pi} e^2}{m_c c^2} + \lg g f \lambda - \theta_B \varepsilon_I + \lg \frac{N_r H}{u_r}, \quad (2)$$

а ординатой

$$\lg \frac{W_{\lambda}}{2R_{c}\Delta\lambda_{D}} = \lg \frac{W_{\lambda}}{\lambda} + \lg \frac{c}{2R_{c}v_{0}}$$
(3)

Эмпирическую кривую роста удобно построить в координатах

$$\log X = \log gf \lambda - \theta_{\rm B} \varepsilon_{\rm I} \tag{4}$$

И

При этом надо в первом приближении принимать разумную темпера-
туру возбуждения
$$\theta_B$$
. Это можно легко сделать по спектральному
классу звезды. В данном случае предварительная температура возбуж-
дения выбрана $\theta_B = 0.95$.

 $lg \frac{W_{\lambda}}{\lambda}$.

Вертикальные смещения, необходимые для согласования наблюдаемой кривой с теоретической, дают параметр v_0 , которое отождествляется с микротурбулентной скоростью. В выражение ординаты (2) входит предельная глубина линий R_c , которая меняется примерно от единицы в случае Солнца до половины в ранних В-звездах. Поэтому ясно, что от этой величины сильно зависит полученная турбулентная скорость. По самым сильным металлическим линиям взята для 41 Суд $R_c = 0.90$ и для \vee Her $R_c = 0.70$.

Горизонтальные смещения наблюденной кривой от теоретической дают содержание влементов в атмосфере звезды. Если для построения

398

эмпирической кривой роста в формуле (3) взять λ в ангстремах, то получим

$$\lg \frac{N_r H}{u_r} = (\lg D - \lg X) - \lg \frac{c}{2R_c v_0} + 20.$$
 (5)

Здесь, выражение в скобках и есть горизонтальный сдвиг, а второй член в правой части — сдвиг в вертикальном направлении.

Кривые роста построены отдельно для всех элементов, у которых наблюдаются неблендированные линии или бленды, которые удается разрешить. Если число линий невелико, то кривые роста для таких элементов построены при условии, что вертикальный сдвиг $\lg c/2 R_c v_0$ у них не отличается от среднего по другим элементам. На рис. 1—6 приведены некоторые примеры полученных кривых роста.

При построении кривых роста в большинстве случаев применялись экспериментальные силы осцилляторов Корлисса и Бозмана [4]. В остальных случаях, если это оказалось возможным, силы осцилляторов приведены в их систему.

2. Температура возбуждения. Если в первом приближении согласование теоретической и наблюдаемой кривой роста произведено, то можно уточнить температуру возбуждения $\theta_{\rm B}$. Для этого на график с предварительной кривой роста вместо $\lg X$ нанесем $\lg gf \lambda$ и найдем отклонения по оси абсцисс от принятой кривой роста. Если

Рис. 4.

ic. 4.

СПЕКТРОФОТОМЕТРИЯ F-ЗВЕЗД

предположение о больцмановском распределении атомов по состояниям справедливо, то связь между найденными отклонениями и потенциалом возбуждения ε должна быть линейной с коэффициентом θ_в.

Определенная таким образом θ_B оказывается зависимым от ε_1 . С одной стороны зависимость θ_B от ε_1 отражает зависимость θ_B от глубины в атмосфере, но с другой стороны она отражает зависимость θ_B от интенсивности линии, так как в среднем, линии с низкими ε_1 более интенсивны, чем с высокими ε_1 . Полученная при помощи кривой роста

Т. А. КИППЕР

температура возбуждения является некоторым средним параметром и не обязательно должно быть действительной температурой возбуждения в звездной атмосфере. В среднем, в интервале потенциалов возбуждения от 0 до 8 эв. для 41 Суд получается

$$\theta_{\rm B}=1.00-0.02\,\varepsilon_{\rm I}\tag{6}$$

и для у Her

$$\theta_{\rm B} = 0.95 - 0.03 \,\varepsilon_{\rm I} \,. \tag{7}$$

3. Ионивационная температура и электронное давление. В принципе можно, написав формулу Саха для двух элементов, для которых известны отношения чисел атомов в двух последовательных стадиях ионизации, найти одновременно ионизационную температуру $\theta_{\rm u}$ и электронное давление $P_{\rm c}$. Но из-за близости ионизационных потенциалов наблюденных элементов этот способ практически неприменим. Повтому ионизационная температура найдена по средней зависимости [5]

$$\frac{\theta_{\rm M}}{\theta_{\rm B}} = 0.91. \tag{8}$$

В качестве $\theta_{\rm B}$ взяты средние значения из формул (5) и (6). Конечно, таким путем можно найти только приближенные оценки. Далее, используя формулу Саха для FeI и FeII найден $P_{\rm e}$. Результаты приведены в табл. 1.

and the second	Таблица			1
	θ _B	θ _Ν	lg P _e	
v Her	0.85	0.77	1.20	
41 Cyg	0.95	0.86	-0.15	

Эти значения $\theta_{\rm H}$ и lg $P_{\rm e}$ были впоследствии использованы при нахождении содержания элементов в атмосферах изучаемых звезд.

4. Турбулентные скорости. Многие авторы указывают на то обстоятельство, что турбулентные скорости в атмосферах сверхгигантов зависят от потенциала возбуждения нижнего уровня линий, по которым они определены. Для исследования этого явления все линии Felu Fell были разбиты на группы в зависимости от ε_i и кривые роста построены отдельно для каждой из таких групп. Это было сделано уже после того, как в первом приближении было определено $\theta_{\rm B}$.

402

Нам не удалось обнаружить различий в v_0 в зависимости от ε_1 . До некоторой степени полученный результат можно объяснить. Турбулентная скорость определяется точнее всего по сильным линиям располагающимся на пологом участке кривой роста. Но эти линии образуются главным образом в поверхностных слоях атмосферы. Конечно, в общем, линия возникшая с уровня с высоким ε_1 , образуется в более глубоких слоях, чем линия возникшая с низкого уровня, но в использованном нами интервале ε_1 (0-5 98) большое значение имеет интенсивность линий. Вследствие малого числа линий не удалось использовать для этой цели Mg II, у наблюдаемых линий которого $\varepsilon_1 \approx 9$ 98.

То, что не обнаруживается зависимость v_0 от ε_1 , отражают рис. 1—4. На этих рисунках на оси ординат нанесены наблюденные значения lg w_{λ}/λ . Никаких вертикальных сдвигов не произведено. На этих рисунках видно, что наблюдается тенденция ослабления линий с ростом ε_1 . Поэтому, если принять более крутой градиент температуры, чем полученный в п. 3, то турбулентные скорости оказываются зависимыми от ε_1 , они уменьшились бы с ростом потенциала возбуждения. Отсюда ясно, что вопрос о турбулентных скоростях тесно связан с проблемой температур возбуждения.

Турбулентные скорости для рассмотренных звезд получаются:

41 Cyg $v_0 = 6.6 \ \kappa m/cek$, v Her $v_0 = 5.4 \ \kappa m/cek$.

Эти скорости включают в себя и тепловое движение, которое, однако, мало при температурах F-звезд.

5. Водородные линии. В работе [1] получены вквивалентные ширины и контуры бальмеровских линий и линий Н и К ионизованного кальция. Контуры Н₁ и Н₆ и 3933 Са II приведены на рис. 7, 8 и 9.

Эквивалентные ширины бальмеровских линий позволяют найти число водородных атомов на втором квантовом уровне над 1 cm^3 фотосферы lg N_3H . При условии оптически тонкого слоя справедлива формула [5]

$$W_{\lambda} = \frac{\pi e^2 \lambda^2}{m_e c^3} f_{2n} N_2 H. \tag{9}$$

В последовательных бальмеровских линиях оптическая толща убывает с ростом главного квантого числа верхнего уровня. Поэтому начиная с некоторой линии реализуется случай тонкого слоя. Максимум величин N_2H , вычисленных по формуле (7), и даст нам искомое значение N_2H . Таким путем получены

v Her $\lg N_3 H = 16.11$,

11 Cyg
$$\lg N_2 H = 16.15.$$

Формула Больцмана для данного случая имеет вид

$$\log N_{\rm e} - \log N_{\rm i} = 0.6 - 10.15 \,\theta. \tag{10}$$

Если использовать в качестве температуры найденную по кривым роста среднюю температуру возбуждения, то получаются следующие числа водородных атомов в основном состоянии, которые почти не отличаются от полного их числа v Her $\lg N_1 H = 23.11$, 41 Cyg $\lg N_1 H = 25.15$.

Эти значения могут иметь большую ошибку из-за неопределенности температур.

По эквивалентным ширинам бальмеровских линий можно определить среднюю электронную концентрацию ле по формуле [5]

$$W_{\lambda}^{a} = k N_2 H n_e \left(\frac{R_c}{0.45}\right)^{a}.$$
 (11)

Эта приближенная формула выводится на основании интерполяционной формулы Миннаэрта и выражения штарковского расширения для крыльев линий. Учитывая ранее полученные значения $N_{*}H_{*}$ по формуле (11) получены значения n_{e} , которые значительно превышают полученные по формуле Саха. С таким явлением встречались и другие авторы, причем различия между двумя способами определения столь велики, что их нельзя объяснить ошибками наблюдений. В табл. 2 даны результаты определений 1g n_e по линиям H₃, H₁, H₈.

	Тъблица 2		
	H _β	н _т	H _ě
v Her	14.18	14.52	14.73
41 Cyg	14.05	14.58	14.64

Контуры водородных линий практически совпадают и различия, которые видны в крыльях линий, скорее всего обусловлены ошибками наблюдений. Это подтверждается различным поведением крыльев у H_{τ} и H_{δ} (рис. 7 и 8). Но остаточные интенсивности у у Her систематически больше, чем у 41 Суд, особенно у далеких членов бальмеровской серии. Это результат большей прозрачности атмосферы 41 Суд. Это подтверждается также тем, что у нее металлические линии значительно сильнее и полученные значения lg NH больше, чем у у Her.

Влияние разности в непрерывном поглощении сказывается сильнее на линиях Н и К ионизованного кальция. Для иллюстрации на основании однородной модели Милна-Эддингтона вычислены контуры линии λ 3933 Ca II. Для случая чистого рассеивания контур дается формулой [6]

$$R = \frac{L^{1/a}}{\frac{1}{3} + \frac{1}{2}\frac{B^0}{B^1}} \left(a_a + \frac{B^0}{B^1}\frac{a_1}{L} + \frac{1-L}{2\sqrt{L}}a_1^2 \right).$$
(12)

Здесь ковффициенты поглощения входят в величину L:

$$L = \frac{1}{1 + \frac{\alpha_{\lambda}}{z_{\lambda}}}.$$
 (13)

Коэффициент поглощения в линии взят в виде

$$u_{\lambda} = N \cdot 16.5 \cdot 10^{-36} \cdot f \cdot \frac{\Gamma}{\gamma_{cl}} \cdot \frac{\lambda_0^2}{\Delta \lambda^2}.$$
 (14)

Условия выбраны следующие: $N = 0.7 \cdot 10^{18}$, $B^0/B^1 = 2/3$, $\Gamma = \Gamma_{rad}$, $\lg x_v = -0.90$ для v Her и $\lg x_v = -1.60$ для 41 Суд. Последние значения выбраны по таблицам Λ . Х. Аллера [7] по температурам и электронным давлениям из табл. 1.

Полученные контуры нанесены из рис. 9, кружками отмечены результаты для у Нег, крестиками для 41 Суд. Соответствие с наблюденными контурами не очень хорошее, что указывает на неприменимость модели Милна-Эддингтона, особенно в случае 41 Суд. Но с другой стороны, ясно видно, что главным образом различия в контурах обусловлены различиями коэффициентов непрерывного поглощения.

6. Содержание элементов. Горизонтальный сдвиг эмпирической кривой роста до совпадения с теоретической дает в случае кривой роста Унзольда величину lg (N_rH/u_r), где N_rH число поглощающих атомов в данном состоянии ионизации над 1 см² фотосферы, а u_r-сумма по состояниям. При нахождении содержания элементов использовались суммы по состояниям Корлисса и Бозмана [4]. Температура

Таблица З

Элемент	Ig N _r H		Источник
	v Her	41 Cyg	$\lg gf \lambda$
CI	20.27	21.17	11
CII	19.77	20.91	
Mg I	15.66	16.01	4;9
Mg II	19.30	20.36	9
All	15.17	15.37	4
ALII	18.00	18.85	
Si I	17.48	17.38	4
Si II	19.19	19.56	1.1
Cal	14.58	14.84	4.9
Call	18.34	19.15	215
Se II	15.47	15.81	4
Ti ll	16.61	17.35	4;9
VI	12.9	13.4	4
VIL	15.71	16.41	4
CrI	14.89	14.93	4
Cr Il	16.86	17.76	9
Mn I	14.61	14.87	4
Mn Il	17.24	18.15	9
Fel	16.24	16.86	8;4
Fe II	18.51	19.68	10
Col	14.5	14.7	4
Coll	16.6	17.4	4
NiI	15.96	16.24	4
Ni II	17.84	18.66	9
Sr II	12.24	15.44	4
Sr III	14.69	15.09	
ΥII	14.71	15.29	4
Zr II	14.79	15.37	4
Ba II	14.73	15.03	4
Ba III	14.60	15.10	presidente.
La II	14.28	14.73	4
Ce II	14.48	14.84	4
Pr II	-11 1	14.14	4
Nd II	14-34	14.74	4
Sm ll	14.20	14.16	4
Eu II	13.20	13.70	4
GdI		12.81	4
GdII		14.59	4
Hf II		14.49	4

при их вычислении была взята близкая к нашему случаю. Результаты определений $\log N_r H$ приведены в табл. З. Там же приведены литературные источники, откуда взяты силы осцилляторов.

Если из кривых роста удалось определить только содержание нейтральных атомов, то число ионизованных атомов найдено по формуле Саха.

Полученные после нормировки относительные содержания элементов приведены вместе с солнечными данными [11] на рис. 10. Для более тяжелых элементов ввиду отсутствия их в работе [11] приведено сравнение со средним космическим содержанием [12]. В общем содержание элементов в обоих звездах не отличается от солнечного.

Здесь уместны некоторые замечания по отдельным элементам. Содержание водорода определено весьма неуверенно из-за неточности температуры. Только по одной линии определено содержание углерода и кремния. Содержание алюминия определено по двум сильным резонансным линиям, которые располагаются на пологом участке кривой роста. Содержание стронция определено также только по двум сильным линиям. Для ScII взяты экспериментальные силы осцилляторов [4]; данные М. Е. и А. А. Боярчук [9], меньше экспериментальных $\lg gf \iota$ на 0.35. Содержание хрома определялось по $\lg gf \iota$ из работы [9]; хотя совпадающих линий мало, кажется, что $\lg gf \iota$ больше экспериментальных на 0.44. Для определения содержания бария применялись экспериментальные $\lg gf \iota$ [4], которые меньше значений из работы [9] на 0.6. Солнечное содержание определено на основании таблиц Бейтса—Дамгарда, которые дают хорошее согласие с данными работы [9]. По-видимому, содержание Y и Zr несколько больше, чем в атмосфере Солнца.

В заключение выражаю благодарность астрономам Крымской астрофизической обсерватории АН СССР за предоставление возможности получить наблюдательный материал. Благодарен А. А. Боярчуку за ценные обсуждения в ходе работы.

Институт физики и астрономии АН Эстонской ССР

SPECTROPHOTOMETRY OF THE F-STARS. II. ATMOSPHERES OF 41 Cyg AND v Her

T. A. KIPPER

Some atmospheric parameters of two F-stars (41 Cyg and \vee Her) are estimated. For analysis the curve of-growth technique based on the theoretical curve of growth calculated by Unsöld is used.

It is found that the excitation temperature depends on the excitation potential, but the microturbulent velocity is found to be constant. The ionisation temperature and the electron pressure are determined.

The relative abundances of elements are found and compared with those of the Sun. The abundances are nearly the same as in the Sun.

ЛИТЕРАТУРА

1. Т. А. Киппер, Публ. Тарт. АО (в печати).

2. S. S. Huang, Ap. J., 115, 529, 1952.

3. А. Унзольд, Физика звездных асмосфер, М., 1949.

 C. H. Corliss, R. W. Bozman, NBS Monograph 53, U. S. Governm. Printing Office, Washington 25, D. C., 1962.

5. Э. Р. Мустель, Звездвые атмосферы, М., 1960.

6. С Чандрасскар, Перенос лучистой энергин, М., 1953.

7. Л. Х. Аллер, сб., "Звездные атмосферы", под ред., Дж. Л. Гринстейна, М., 1963.

8. К. К. Прокофьев, Е. И. Никонова, Ц. Ф. Груздев, М. С. Фриш, Изв. КрАО, 31, 281, 1964.

9. М. Е. Боярчук, А. А. Боярчук, Изв. КрАО, 22, 234, 1960.

10. B. Warner, Gomm. from the University of London obs., No 70, 1966.

11. L. Golberg, E. A. Maller, L. H. Aller, A.p. J. Suppl. ser., 5, No 45, 1960.

12. К. У. Аллен, Астрофизические величины, М., 1960.

9-279