АСТРОФИЗИКА

TOM 2

СЕНТЯБРЬ, 1966

выпуск з

МОДЕЛИ ВНЕШНИХ СЛОЕВ ГОРЯЧИХ ЗВЕЗД ГЛАВНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

В. Г. ГОРБАЦКИЙ, А. К. КОЛЕСОВ Поступила 7 июля 1966

Рассчитываются давление и температура в зоне лучистого равновесия горячих звезд до верхней границы конвективного слоя. Массы звезд взяты в промежутке $1.5 < \frac{M_{\odot}}{M_{\odot}} < 40$, а раднусы и светимости соответствуют звездам главной последовательности. При $M_{\odot} > 4 M_{\odot}$ существует только одна конвективная зона, обусловленная ионизацией He II. Уменьшение адиабатического температурного градиента, связанное с ионизацией He I, слишком мало и не приводит к возникновению конвекции. Определена оптическая глубина τ_0 верхней границы конвективной зоны и физические условия на этом уровне для различных значений M_{\odot} . Обнаружено, что величина τ_0 при 0.0625 $< \frac{He}{H} < 0.125$ нечувствительна к содержанню гелия.

1. Введение. При расчетах моделей внешних слоев звезд ограничиваются, как правило, областью сравнительно небольшой оптической толщины — порядка нескольких единиц. Этого достаточно для вычисления теоретического спектра звезды, который обычно и является конечной целью расчета. Однако для теории внутреннего строения звезд важно продолжение подобных расчетов до гораздо больших глубин.

Модель внутреннего строения звезды в эначительной мере определяется выбором граничных условий. Если эти условия относятся к самой поверхности звезды то, как неоднократно отмечалось, модель может оказаться очень неточной. Ведь способ ее вычисления основывается на ряде предположений, оправдывающихся только в достаточно глубоких областях звезды, а ее приходится применять и к внешним слоям звезды. Чем больше глубина, на которой задаются граничные условия, тем более точной получится модель внутреннего строения звезды. Поэтому-то и нужно проводить расчет моделей внешних слоев. звезд до большой глубины теми методами, которые используются в теории звездных атмосфер.

Построение моделей атмосфер для звезд близких по своему типу к Солнцу затруднено наличием у этих звезд внешних конвективных зон, в первую очередь, зоны ионизации водорода. Отсутствие точной теории турбулентной конвекции заставило использовать в этих случаях весьма грубые методы, не дающие уверенности в правильности результатов (например, [1, 2]). Лишь в самое последнее время проделаны более точные вычисления для внешних слоев Солнца [3], оказавшиеся очень трудоемкими.

Помимо трудностей в вычислениях моделей внешних слоев звезд, обусловленных существованием конвективных зон, проведению расчетов для больших глубин препятствовало отсутствие достаточно полных таблиц значений ковффициента непрозрачности при высоких давлениях и температурах, которые должны существовать на оптических глубинах порядка $10^8 - 10^3$.

Обычно считают, что у звезд с массой, превосходящей $2M_{\odot}$, самые внешние слои звезды (с оптической глубиной $\tau \approx 1-5$) устойчивы относительно конвекции, так как вследствие высокой поверхностной температуры водород в этой области ионизован. Относительно же конвективной зоны, обусловленной ионизацией гелия, принимается, что она находится глубоко и не влияет непосредственно на наблюдаемый спектр звезды. Точные расчеты для определения глубины гелиевой конвективной зоны ранее не проводились. К настоящему времени мы располагаем таблицами коэффициента непрозрачности в довольно широком интервале давлений и температур (до $T = 50\,000^{\circ}$ K) [4]. При помощи этих таблиц можно производить вычисление моделей внешних слоев звезд до больших глубин — во всяком случае, до верхней границы гелиевой конвективной зоны.

В данной работе вычислены модели внешней зоны лучистого равновесия звезд главной последовательности с массами превосходящими 1.5 M_{\odot} , при различном содержании гелия, и для втих звезд определен уровень верхней границы конвективной зоны.

2. Метод расчета модели воны лучистого равновесия. Для определения величины газового давления P_{x} и температуры T в зоне лучистого равновесия использовано, как это всегда делается, уравнение гидростатического равновесия

$$\frac{dP_g}{d\tau} = \frac{g}{\overline{x}(P_g, T)}$$

(1)

где g — ускорение силы тяжести и $\overline{x}(P_g; T)$ — ковффициент непрозрачности. Величина температуры на оптической глубине \overline{z} связана с ее значением T_0 на поверхности известным соотношением

$$T^{i} = T_{0}^{i} \sqrt{3} [\tau + q(\tau)], \qquad (2)$$

где q (=) — функция Хопфа.

Величина $\tilde{x}(P_{e}; T)$ получена на основе работы Вардя [4]. В указанной работе приведены таблицы величины электронного давления P_{e} в зависимости от P_{g} и величины $\vartheta = \frac{5040}{T}$, а также таблицы значений росселандовского среднего ковффициента непрозрачности \tilde{x} в зависимости от P_{e} и ϑ . Считается, что непрозрачность создается поглощением H; H⁻; H₂; He и He II и рассеянием на свободных электронах и молекулах H₂. Содержание гелия (по числу атомов) принято равным 0.0625 и 0.125 от содержания водорода, а количество более тяжелых элементов — 0.00002, 0.0002, 0.002. В поглощении излучения непосредственно эти элементы не учитываются — их роль сводится лишь к обеспечению некоторого количества свободных электронов.

Так как переход от зависимости $\bar{x}(P_e; \vartheta)$ к $\bar{x}(P_g; \vartheta)$ в процессе расчета модели сложен и приводит к потере точности, то, при помощи указанных таблиц были составлены таблицы значений $\bar{x}(P_g; \vartheta)$, которые и использовались в вычислениях (см. Приложение, табл. I и II). В них даны значения $\bar{x}(P_g; \vartheta)$ для двух случаев: а) $\frac{\text{He}}{\text{H}} = 0.0625$ и 6) $\frac{\text{He}}{\text{H}} = 0.125$ при содержании тяжелых элементов 0.002 и в интервалах $0.1 \leq \vartheta \leq 1$ и $1.0 \leq \lg P_g \leq 6.5$. Точность табл. I и II, как и исходных, единица последнего знака. Для отыскания с той же точностью промежуточных значений $\bar{x}(P_g; \vartheta)$ достаточно квадратичной интерполяции.

3. Вычисление адиабатического температурного градиента. Как хорошо известно, конвективная неустойчивость наступает, когда перестает выполняться неравенство

$$\left(\frac{d\ln T}{d\ln P}\right)_{xyy} \leqslant \left(\frac{d\ln T}{d\ln P}\right)_{zg},\tag{3}$$

то есть лучистый температурный градиент становится больше адиабатического. Вычисление адиабатического градиента для смеси водорода и гелия при одновременном учете обоих состояний ионизации гелия приводит к чрезвычайно громоздким и трудным для использования формулам. Определение $\left(\frac{d\ln T}{d\ln P}\right)_{ad} \equiv \nabla_{ad}$ производилось для такой смеси графическим путем [5] при значении отношения $\frac{\text{He}}{\text{H}} = 0.15$. В данном случае результаты работы [5] неприменимы, как вследствие

предполагаемого иного содержания Не, так и по причине совершенно недостаточной точности графиков.

Для приближенного, но с высокой точностью, вычисления ∇_{BR} можно рассмотреть отдельно два случая. Поскольку потенциалы ионизации водорода и гелия существенно различаются, то в тех слоях звезды, где водород вследствие низкой температуры ионизован не полностью, вторая ионизация гелия практически не происходит. Назовем вту область (А). Там же, где начинается вторая ионизация гелия (область (В)) водород можно считать полностью ионизованным. В области (А) тогда имеем:

$$\begin{split} \nabla_{\mathbf{s}\mathbf{a}} &= \left[1 + \overline{x} \,\Psi \left\{ \mathbf{v}_{1} x_{1} \left(1 - x_{1}\right) z_{1} + \mathbf{v}_{2} x_{3} \left(1 - x_{2}\right) z_{3} \right\} \right] \times \\ &\times \left[\frac{5}{2} + \overline{x} \,\Psi \left\{ \mathbf{v}_{1} x_{1} \left(1 - x_{1}\right) z_{1}^{2} + \mathbf{v}_{2} x_{2} \left(1 - x_{2}\right) z_{2}^{2} \right\} + \\ &+ \frac{\mathbf{v}_{1} \mathbf{v}_{2} \left(1 - x_{1}\right) \left(1 - x_{2}\right) x_{1} x_{2} \,\Phi \Psi}{\left(1 + \overline{x}\right)} \right]^{-1}, \\ z_{1} &= \frac{5}{2} + \frac{\gamma_{1}}{kT}; \quad \overline{x} = \mathbf{v}_{1} x_{1} + \mathbf{v}_{2} x_{2}; \quad \Phi = \left(\frac{\gamma_{1}}{kT} - \frac{\gamma_{1}}{kT}\right)^{2}; \\ &= \frac{5}{2} + \frac{\gamma_{2}}{kT}; \quad \overline{x}^{3} = \mathbf{v}_{1} x_{1}^{2} + \mathbf{v}_{3} x_{2}^{2}; \quad \Psi = \left(2 \,\overline{x} + \overline{x}^{2} - \overline{x}^{3}\right)^{-1} \end{split}$$

Через v_1 и v_2 обозначено относительное содержание водорода и гелия (по числу атомов), χ_1 и χ_2 — энергия ионизации и x_1 и x_2 — степень ионизации водорода и гелия соответственно. Эта формула в несколько ином виде приведена в книге Унзольда [6].

В области (В), где учитывается ионизация только одного элемента, величина _{Vas} выражается проще:

Zg

$$\tau_{a1} = \frac{\frac{1+\overline{x}}{x_{3}(1-x_{3})} + \frac{\nu_{2}}{\overline{x}} + \nu_{2}\left(\frac{5}{2} + \frac{\gamma_{3}}{kT}\right)}{\frac{5}{2}\left[\frac{1+\overline{x}}{x_{3}(1-x_{3})} + \frac{\nu_{2}}{\overline{x}}\right] + \nu_{2}\left(\frac{5}{2} + \frac{\gamma_{3}}{kT}\right)^{2}},$$
 (5)

где $x = 1 + v_3 x_3$, $x_3 -$ степень ионизации He II, $\gamma_3 -$ әнергия ионизации He II. Для вычисления степени ионизации использована формула Саха

$$\frac{x_{l}}{1-x_{l}} - \frac{\overline{x}}{1+\overline{x}} = \frac{2g_{r+1}}{g_{r}} \cdot T^{\frac{5}{2}} \cdot 10^{-z_{l}} \frac{\frac{3640}{7} - 0.48}{,}$$
(6)

где g_r и g_{r+1} — статистические веса первоначального состояния и состояния ионизации. Электронное давление связано с газовым соотношением:

$$\frac{P_s}{P_g} = \frac{\overline{x}}{1 + \overline{x}}.$$
(7)

Переход от формулы (4) к (5) производился при том значении T, при котором обе формулы дают одинаковое значение ∇_{sg} . Эта температура несколько различна для разных моделей, но остается близкой к 30 000°.

4. Выбор граничных условий. Расчет зоны лучистого равновесия проведен для моделей, соответствующих звездам главной последовательности от класса F 5 до класса О5. Величины массы M_{\star} , радиуса R_{\star} и светимости L_{\star} , характеризующие каждую из моделей, приведены в табл. 1, составленной по [7].

Таблица 1

Номер моделя	1a, 16	2a, 26	3a, 36	4a, 46	5a, 56	ба, бб	7a, 76	8a, 86
$lg \frac{M_*}{M_{\odot}}$	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6
$lg \frac{R_*}{R_{\odot}}$	0.10	0.30	0.45	0.56	0.70	0.90	1.00	1.20
$lg \frac{L_*}{L_{\odot}}$	0.8	1.6	2.2	2.8	3.4	4.0	4.6	5.1

277

Модели, обозначенные индексом "а", имеют содержание гелия $\frac{\text{He}}{\text{H}} = 0.0625$, а у моделей с индексом "б" отношение $\frac{\text{He}}{\text{H}} = 0.125$.

По данным, приведенным в табл. 1, найдены значения поверхностной температуры T_0 и ускорения силы тяжести g на поверхности звезды при помощи очевидных формул:

$$T_{0} = \sqrt[4]{\frac{L_{*}R_{\odot}^{2}}{L_{\odot}R_{*}^{2}}} T_{0\odot}; g_{*} = \frac{M_{*}}{M_{\odot}} \frac{R_{\odot}^{2}}{R_{*}^{2}} g_{\odot}$$
(8)

Значения $\vartheta_0 = \frac{5040}{T_0}$ и *g* для рассчитываемых моделей даны в табл. 2.

Таблица 2

Номер моделя	1a, 16	2a, 26	3a, 36	4a, 46	5a, 56	ба, бб	7a, 76	8a, 86
ðo	0.760	0.600	0.508.	0.409	0.340	0.302	0.241	0.227
g. · 10 ⁻⁴ см/сек	2.74	1.73	1.37	1.31	1.09	0.690	0.690	0.435

Граничные условия для расчета зоны лучистого равновесия припомощи уравнений (1) и (2) нельзя ставить при $\tau = 0$, так как в этой точке уравнение (1) имеет особенности. Для выбора граничных условий принята следующая процедура: считается, что в интервале

 $0 < \tau \leqslant 0.001$

величина х постоянна, причем ее значение равно $\overline{\chi}(P_g; T)|_{z=0.001}$. Так как можно считать, что на глубине $\tau = 0.001$ величина $T = T_0$, то из (1) получается

$$\overline{x}(P_g; T_0)P_g = 0.001 \ g.$$
 (9)

Уравнение (9) решается при помощи табл. 1а и 16 при заданных. T_0 и g и таким путем находится значение P_4 ($\tau = 0.001$). Эта величина. для всех шестнадцати моделей приводится в табл. 3.

Таблица З

Номер	la	2a	3a	4a	5a	ба	7a	8a
Р (==0.001) дин см ⁻²	273.0	15.35	14.97	21.26	23.01	16.90	17.95	11.80
Номер модели	16	26	36	46	56	66	76	86
Р (==0.001) дин см ⁻²	420.0	18.40	16.65	23.75	25.20	19.21	20.20	13.21

5. Метод вычисления. Интегрирование уравнения (1) производилось численно на машине М-20. Применявшийся метод интегрирования Хэмминга является обобщением метода Милна и изложен в работе [8]. Расчетная формула для получения *п*-ого значения $P_g^{(n)}$ по предыдущим значениям имеет вид:

$$P_{g}^{(n)} = {}_{c}P_{g}^{(n)} + \frac{9}{121} \left[{}_{p}P_{g}^{(n)} - {}_{c}P_{g}^{(n)} \right], \tag{10}$$

где величины ${}_{p}P_{g}^{(n)}$ и ${}_{c}P_{g}^{(n)}$ означают следующее:

$${}_{g}P_{g}^{(n)} = P_{g}^{(n-4)} + \frac{4}{3} g_{*} \left(\frac{\ln 10}{S}\right) \left[Q + 2\frac{\tau_{n-3}}{\overline{\tau_{n-3}}}\right], \tag{11}$$

$${}_{g}P_{g}^{(n)} = \frac{1}{8} \left[9 P_{g}^{(n-1)} + P_{g}^{(n-3)} + 3 g_{*} \left(\frac{\ln 10}{S} \right) \left(Q + \frac{\tau_{n}}{\overline{\tau_{n}}} \right), \quad (12)^{*}$$

a

$$Q=2\frac{\tau_{n-1}}{\overline{x}_{n-1}}-\frac{\tau_{n-2}}{\overline{x}_{n-2}}.$$

Формула (11) дает предварительное значение $P_g^{(n)}$, которое используется в (12) для вычисления $\overline{x_n}$, а затем по (11) и (12) получается из (10) окончательное значение $P_g^{(n)}$.

Величина $\frac{1}{S}$ означает шаг интегрирования. Шкала по τ -логарифмическая. При расчетах принималось $\frac{1}{S} = 0.1$, а для контроля вычис-

[•] В работе [8] формула (12) приведена с ошибкой.

ления дублировались с вдвое меньшим шагом. Необходимые для начала интегрирования значения P при $\lg \tau = -2.9; -2.8; -2.7$ были получены предварительно обычным путем. Величина g в пределах всей зоны лучистого равновесия принималась постоянной.

Помимо интегрирования уравнения (1), программа предусматривает вычисление лучистого и адиабатического температурных градиентов ∇_{nyy} и ∇_{ga} . Вообще говоря, из их сравнения можно определять уровень границы конвективной зоны, на которой начинает выполняться условие $\nabla_{nyy} > \nabla_{ga}$. Однако, случающееся в ряде моделей слабое неравенство этого вида в очень узком слое, по-видимому, еще не должно служить основанием для заключения о наличии конвекции в этом слое. Конвективная зона начинается там, где неравенство $\nabla_{nyy} > \nabla_{ga}$ становится устойчивым, что можно обнаружить, сравнивая ∇_{nyy} и ∇_{ga} не в одной точке, а для ряда последовательных значений 5.

Поскольку для некоторых вопросов теории представляет интерес знание величины $\alpha = \frac{m}{M_{\bullet}}$, где m — масса вещества, находящегося над конвективной зоной, то в программу было включено и вычисление α по очевидной формуле:

$$\alpha = \frac{4\pi R_*^2}{M_*} \int_0^{\pi} \frac{d\tau}{\overline{x}(P_g; T)}$$
(13)

6. Результаты вычислений. Расчет моделей 1а и 16, 2а и 26 показал, что условие конвективной устойчивости нарушается уже в самых внешних слоях звезды — для моделей 1а и 16 приблизительно при $\tau \approx 0.35$, а для 2а и 26 — при $\tau \approx 0.15$. Неравенство $\nabla_{3yq} > \nabla_{ag}$ оказывается очень сильным при величинах τ порядка единицы — значение ∇_{3yq} В десятки раз превышает ∇_{ag} . Таким образом, основным фактором, вызывающим в этих случаях конвективную неустойчивость, является большая величина лучистого градиента, обусловленная увеличением ковффициента непрозрачности в указанной области.

В моделях За и Зб при $0.2 \leq \tau \leq 0.5$ также имеет место неравенство $\nabla_{xyy} > \nabla_{\delta x}$, но так как оно слабое и, кроме того, этот слой прозрачен для излучения, не приходится считать, что перенос энергии путем конвекции может играть в нем сколько-нибудь существенную роль. В модели 4a соответствующий слой еще тоньше, а в остальных моделях водородной конвективной зоны вообще не обнаруживается. Таким образом, водородная конвективная зона практически отсутствует во всех моделях от За до 86. Результаты вычислений газового давления, температуры и температурных градиентов для всей зоны лучистого равновесия в этих моделях приводятся в табл. III — XIV Приложения.

Интересным обстоятельством, выяснившимся в результате расчета моделей, является отсутствие у горячих ($T_0 \gtrsim 10\,000^\circ$) звезд главной последовательности конвективной зоны, связанной с ионизацией Не.

Рис. 1.

Хотя в тех слоях, где гелий переходит от состояния Не к состоянию Не II адиабатический градиент и уменьшается, но неравенство $\nabla_{xyy} < \nabla_{xy}$ остается справедливым вплоть до зоны ионизации Не II.

По вычисленным моделям определяется оптическая глубина τ_0 , с которой начинается конвективная зона, обусловленная уменьшением показателя адиабаты вследствие второй ионизации гелия. Зависимость τ_0 от массы звезды и от ее поверхностной температуры представлены графически на рис. 1 и 2, построенных по данным табл. 4. Эти графики позволяют достаточно уверенно находить τ_0 для любой звезды главной последовательности со значением массы $M_* > 4 M_{\odot}$ (классы A0 - O5).

Таблица

<u>M.</u> <u>M</u> o	4.0	6.3	10.0	15.8	25.0	40.0
<i>Т</i> ° К	9900	12 300	14 800	16 700	20 900	22 100
τ0	126	46.6	19.1	10.0	3.46	2.40
Tk	38 200	36 900	35 800	34 500	34 000	33 400
$P_{k} \cdot 10^{-4}$	18.5	10.2	5.6	2.9	1.58	1.06
a · 10 ⁹	0.83	0.55	0.4	0.51 ·	0.28	0.46
m·10 ⁻²⁴	12.9	13.9	15.6	31.4	27.2	72

Данные о величинах τ_0 , T_k , P_k и α в табл. 4 относятся к случаю "6", то есть соответствуют значению $\frac{\text{He}}{\text{H}} = 0.125$. Соответствующие величины для случая "а" очень близки к приведенным.

Зависимость значения температуры T_k на внешней границе конвективной зоны He II от массы звезды оказалась очень слабой. Газовое же давление P_k на этом уровне сильно меняется с M_{\bullet} . Обе зависимости $T_k(M_{\bullet})$ и $P_k(M_{\bullet})$ иллюстрируются графиками (рис. 3), построенными по данным табл. 4. Характер этих графиков объясняется, по-видимому, тем, что степень ионизации зависит от температуры гораздо сильнее, чем от электронного давления.

Обращает на себя внимание почти полное отсутствие разницы между результатами вычислений при содержании гелия $\frac{\text{He}}{\text{H}} = 0.0625$ и вдвое большем. По-видимому, втот факт дает основание пользоваться полученными данными и при исследовании звезд с другим содержанием гелия, например, с обычно принимаемым значением $\frac{\text{He}}{\text{H}} = 0.15$.

Последнее обстоятельство, которое стоит отметить, вто сравнительно небольшое различие в значениях ∇_{Ayy} и ∇_{ag} в пределах зоны He II — если вычислять ∇_{Ayy} , не учитывая конвекции. Следовательно, роль конвекции в переносе излучения не очень велика, поскольку доля потока энергии, обусловленная конвекцией, пропорциональна $\nabla_{Ayy} - \nabla_{ag}$. Истинное значение температурного градиента должно лежать между ∇_{Ayy} и ∇_{ag} и, вероятно, в данном случае ближе к ∇_{Ayy} . Возможно, что, использовав некоторое среднее значение градиента, образованное из ∇_{Ayy} и ∇_{ag} , удастся получить сравнительно хорошее представление о толщине конвективной зоны и условиях на ее внутренней границе. Однако, если подобный способ оценки и допустим, для его реализации необходимы таблицы коэффициента непрозрачности для более высоких температур и давлений, чем принятые в работе [4].

Ленинградский государственный университет

MODELS OF THE OUTER LAYERS OF MAIN SEQUENCE HOT STARS

V. G. GORBATZKY, A. K. KOLESOV

Pressure and temperature in the radiative equilibrium zone of hot stars are computed up to the upper limit of convective layer. Masses of stars are taken in the interval $1.5 < \frac{M_{\odot}}{M_{\odot}} < 40$ and their radii and luminosities are such as for corresponding main sequence stars. When $M_{\odot} > 4 M_{\odot}$ there is only one convective zone that is due to He II ionization. Decrease of adiabatic temperature gradient due to He II ionization is too small to cause convection. Optical depth τ_0 of the upper limit of He II convective zone and physical conditions at that level are found for various M_{\bullet} . As it is turned out the value of τ_0 for $0.0625 \ll \frac{\text{He}}{\text{H}} \ll 0.125$ is insensitive to helium content.

ЛИТЕРАТУРА

- 1. E. Böhm-Vitense, Zs. f. Astrophys., 46, 108, 1958.
- 2. L. Henyey, M. Vardya, P. Bodenheimer, Ap. J., 142, 841, 1965.
- 3. F. Faulkner, K. Griffiths, F. Hoyle, M. N., 129, 363, 1965.
- 4. M. Vardya, Ap. J., Suppl. Ser., VIII, N 80, 1964.
- 5. A. Unsöld., Zs. f. Astrophys., 25, 11, 1948.
- 6. А. Унзольд, Физика звездных атмосфер., ИЛ, М., 1949.
- 7. C. Allen, Astrophysical Quantities, 2nd Ed., London, 1963.
- 8. O. Gingerish, Smithsonian Institute Astrophysical Observatory, Special report N 167... Cambridge Mass. USA, 1964.

Таблица І

 $\lg \overline{\star}(P_g, \vartheta) \left(\frac{\mathrm{He}}{\mathrm{H}} = 0.0625\right)$

lg Pg	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
-1,0	-0.456	-0.457	-0.476	-0.476	-0.495	-0.483	-0.497	-0.890	-1.614	-2.327
-0.5	-0.456	-0.461	-0.471	-0.473	0.480	-0.442	-0.506	-1.079	-1.834	-2.531
0,0	-0.456	-0.463	-0.463	-0.460	0.433	-0.357	-0.532	-1.256	-2.025	-2.716
0.5	-0.455	0.458	-0,450	-0.423	-0.327	0.240	-0.584	-1.396	-2.181	-2.835
1.0	0.454	-0.441	-0.424	-0.335	-0.133	-0.005	-0.627	-1.498	-2.247	-2.886
1.5	-0.451	-0,404	-0,360	-0.161	0.159	0.140	-0.644	-1.497	-2.235	-2.827
2.0	-0.447	-0.349	-0.232	0.118	0.521	0.272	0.605	-1.437	-2.122	-2.686
2.5	0.431	-0.266	-0.017	0.491	0.887	0.383	-0.522	-1.305	-1.937	-2.476
3.0	-0.390	-0.128	0.295	0.926	1.185	0.468	-0.402	-1.117	-1.729	-2.215
3.5	-0.297	0.099	0.689	1.385	1.381	0.566	-0.252	0.923	-1.490	-1.915
4.0	-0.125	0.424	1.136	1.791	1.513	0.673	-0.082	-0.710	-1.239	-1.568
4.5	0.146	0.848	1.607	2.120	1.598	0.794	0.098	-0.490	0.952	-1.189
5.0	0.521	1.315	2.078	2.337	1.686	0.931	0.288	0.256	-0.655	0.800
5.5	0.980	1.802	2.720	2.476	1.768	1.080	0.489	-0.002	-0.317	-0.427
6.0	1.474	2.291	2.886	2.563	1.876	1.244	0.709	0.271	0.039	0.078
6.5	1.974	2.772	3.052	2.644	1.995	1.430	0.942	0.565	0.378	0.235

-

7	'ab	л	ш	a	I	l
	_			_		-

THE A DEPEND OF		and the second				-				
Ig Pg	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
-1.0	-0.487	-0.490	-0.528	-0.529	-0.569	-0,561	-0.576	_0.960		-2.394
-0.5	-0.487	-0.497	-0.523	-0.525	-0.556	-0.521	-0.581	-1.142	-1.902	-2.598
0.0	-0.487	-0.502	-0.515	-0.515	-0.511	-0.436	-0.607	-1.326	-2.092	-2.786
0.5	0.486	-0.507	-0.503	-0.483	-0.408	-0.296	-0.657	-1.467	-2.254	-2.908
1.0	-0.485	0.492	-0.476	-0.403	-0.217	-0.118	-0.702	-1.571	-2.321	-2.967
1,5	-0.483	-0.456	-0.415	-0.237	0.068	0.059	-0.721	-1.575	-2.316	-2.910
2.0	-0.473	-0.402	-0.286	0.035	0.434	0.195	-0.686	-1.518	-2.206	-2.771
2.5	0.460	-0.319	-0-071	0.405	0.802	0.302	-0.603	-1.390	-2.022	-2.565
3.0	-0.417	-0.183	0.238	* 0.837 -	1.096	0.386	-0.484	-1.203	-1.817	-2.306
3.5	-0.321	0.041	0.624	1.287	1.297	0.485	-0.330	-1.010	-1.579	-2.008
4.0	-0.161	0.373	1.063	1.703	1.432	0.590	-0.168	-0.798	-1.330	-1.663
4.5	0.142	0.797	1.522	2.035	1.516	0.711.	0.013	-0.578	-1.054	-1.285
5.0	0.531	1.262	1.990	2.253	1.605	0.846	0.201	-0.345	-0.748	-0.896
5.5	1.001	1.747	2.430	2.396	1.691	0.995	0.402	-0.092	-0.412	-0.521
6.0	1.502	2.239	2.809	2.481	1.794	1.159	0.621	0.180	-0.061	-0.171
6.5	1.988	2.705	3.127	2.564	1.912	1.344	0.853	0.472	0.285	0.142

 $\lg \bar{\varkappa}(P_g, \ \vartheta) \left(\frac{\mathrm{He}}{\mathrm{H}} = 0.125\right)$

модели внешних слоев горячих звезд

Таблица III

287

lg =	T	Pg	Г луч	∇ад	a
-2.5	9940	3.75.101	0.00195	0.156	0.168.10-12
-2.0	9960	7,91.10 ¹	0.00694	0.119	0.353-10-12
-1.5	10 050	1.58.102	0.0219	0.102	0.705.10-12
-1.0	10 330	3.09.102	0.0630	0.0995	0.138.10-11
-0.8	10 540	4.05.102	0.0904	0.104	0.181.10-11
-0.6	10 860	5.35.102	0.123	0.115	0.239.10-11
-0.4	11 310	7.21.102	0.135	0.136	0.322.10-11
-0.2	11 930	1.04.103	0.171	0.171	0.463.10-11
0.0	12 760	1.49.103	0.198	0.225	0.665.10-11
0.1	13 250	1.79.103	0.210	0.250	0.801.10-11
0.2	13 800	2.18.10 ³	0.211	0.262	0.971-10-11
0.3	14 420	2.69.10 ³	0.185	0.253	0.120.10-10
0.4	15 090	3.48.103	0.203	0.229	0.156.10-10
0.5	15 830	4.49.103	0.195	0.204	0.200.10-10
0.6	16 630	5.78-103	0.202	0.192	0.258.10-10
0.7	17 500	7.41-103	0.207	0.198	0.331.10-10
0.8	18 440	9.48-10 ³	0.214	0.224	0.423.10-10
0.9	19 450	1.21.104	0.220	0.265	0.541.10-10
1.0	20 530	1.55.104	0.216	0.308	0.691.10-10
1.1	21 680	1.99.10+	0.230	0.344	0.891.10-10
1.2	22 910	2.55-104	0.231	0.368	0.114.10-9
1.3	24 230	3.24.104	0.237	0.382	0.144.10-9
1.4	25 630	4.09.104	0.244	0.390	0.182.10-9
1.5	27 110	5.14.104	0.250	0.394	0.229.10-9
1.6	28 690	6.42.104	0.260	0.397	0.287.10-9
1.7	30 370	7.99-104	0.263	0.396	0.357.10-9
1.8	32 150	9.91.104	0.266	0.385	0.442.10-9
1.9	34 040	1.22.105	0.271	0.365	0.547.10-9
2.0	36 040	1.51.105	0.276	0.329	0.674.10-9
2.1	38 170	1.86.105	0.279	0.280	0.828.10-9

МОДЕЛЬ За

291-28

Таблица IV

lg τ	T	Pg	Глуч	∇ _B д	a
-2.5	12 340	5.61.101	0.00181	0.245	0.274.10-12
-2.0	12 380	1.24.102	0.00656	0.280	0.608.10-12
-1.5	12 490	2.54-102	0.0215	0.286	0.124.10-11
-1.0	12 820	5.08.102	0.0610	0.278	0.248.10-11
-0.8	13 090	6.72.103	0.0869	0.275	0.328.10-11
-0.6	13 490	8.99.102	0.117	0.267	0.439.10-11
-0.4	14 050	1.22.103	0.148	0.248	0.596.10-11
-0.2	14 820	1.76.103	0.166	0.215	0.862·10 ⁻¹¹
0.0	15 840	2.65.103	0.177	0.188	0.129.10-10
0.1	16 460	3.26.103	0.187	0.187	$0.160 \cdot 10^{-10}$
0.2	17 140	4.04.103	0.196	0.198	$0.197 \cdot 10^{-10}$
0.3	17 900	5.02.103	0.204	0.224	0.235.10-10
0.4	18 740	6.26.103	0.211	0.261	0.3C6.10-10
0.5	19 660	7.82.103	0.218	0.301	0.382.10-10
0.6	20 660	9.82.103	0.216	0.337	0.480.10-10
0.7	21 740	1.24.104	0.226	0.362	0.608.10-10
0.8	22 900	1.57.104	0.225	0.379	0.768.10-10
0.9	24 150	1.98.104	0.237	0.388	0.966.10-10-
1.0	25 500	2.47.104	0.245.	0.393	0.121.10-9
1.1	26 930	3.09.104	0.249	0.396	0.151.10-9
1.2	28 460	3.85.104	0.255	0.398	0.188.10-9
1.3	30 090	4.78.104	0.260	0.392	0.233.10-9
1.4	31 830	5.91.104	0.267	0.380	0.289.10-9
1.5	33/680	7.29.104	0.270	0.354	0.356.10-9
1.6	35 640	8.96.104	0.274	0.311	0.438·10 ⁻⁹

МОДЕЛЬ 4а

- 1 -

модели внешних слоев горячих звезд

Таблица V

M	0	AE.	λF	5a
	_			_

lg =	T	Pg	∇луч	Vax	Z
-2.5	14 840	6.54-101	0.00166	0.223	0.462.10-12
-2.0	14 890	1.60.102	0.00585	0.185	0.113.10-11
-1.5	15 020	3.54.103	0.0195	0.174	0.240.10-11
-1.0	15 430	7.51.102	0.0569	0.177	0.530-10-11
-0.8	15 750	1.02.103	0.0813	0.181	0.716-10-11
0.6	16 220	1.38.103	0,110	0.190	0.977.10-11
-0.4	16 900	1.91.103	0.142	0.210	0.135.10-10
-0.2	17 850	2.69.103	0.170	0.250	0.190.10-10
0.0	19 060	3.88.103	0.194	0.307	0.273.10-10
0.1	19 800	4.69.103	0.204	0.335	0.331.10-10
0.2	20 620	5.74.103	0.198	0.357	0.405.10-10
0.3	21 540	7.07.103	0.211	0.374	0.499.10-10
0.4	22 540	8.74-103	0.220	0.384	0.616.10-10
0.5	23 650	1.05.104	0.227	0.391	0.763.10-10
0.6	24 850	1.34-104	· 0.234	0.395	0.945.10-10
0.7	26 150	1.66.104	0.242	0.397	0.117.10-9
0.8	27 550	2.05-104	0.253	0.398	0.145.10-9
0.9	29 050	2.53.104	0.257	0.398	0.178.10-9
1.0	30 670	3.12.104	0.261	0.382	0.220.10-9
1.1	32 390	3.84.104	0.266	0.359	0.271.10-9
1.2	34 230	4.72.104	0.269	0.317	0.333.10-9

Таблица VI

lg ٦	T	Pg	⊽луч	Vaz	a	
-2.5	16 710	5.03.101	0.00153	0.375	0.886.10-12	
-2.0	16 760	1.33.102	0.00536	0.345	0.234.10-11	
-1.5	16 910	3.18.102	0.0179	0.311	0.560.10-11	
-1.0	17 370	7.13.102	0.0536	0.296	0.126.10-10	
-0.8	17 730	9.80.102	0.0780	0.303	0.172.10-10	
0.6	18 260	1.35.103	0.108	0.319	0.238.10-10	
-0.4	19 030	1.88.103	0.139	0.342	0.331.10-10	
-0.2	20 070	2.66.103	0.170	0.366	0.467.10-10	
0.0	21 460	3.84.103	0.192	0.384	0.675.10-10	
0.1	22 290	4.65.103	0.203	0.390	0.818.10-10	
0.2	23 220	5.66.103	0,213	0.393	0.996.10-10	
0.3	24 250	6.91.10 ³	0.221	0.396	0.122.10-9	
0.4	25 380	8.47.103	0.229	0.398	0.149.10-9	
0.5	26 620	1.04.104	0.236	0.398	0.183.10-9	
0.6	27 980	1.28.104	0.244	0.399	0.225.10-9	
0.7	29 440	1.57.104	0.251	0.386	0.277.10-9	
0.8	31 020	1.93.104	0.257	0.365	0.340.10-9	
0.9	32 710	2.37.104	0,263	0.328	0.417.10-9	
1.0	34 530	2.90.104	0,272 .	0.275	0.510.10-9	

МОДЕЛЬ 6а

МОДЕЛИ ВНЕШНИХ СЛОЕВ ГОРЯЧИХ ЗВЕЗД

Таблица VII

ig =	T	Pg	Глуч	Lez	α
-2.5	20 940	5.37-10 ¹	0.00148	0.400	0.945.10-12
-2.0	21 000	1.49·10 ²	0.00496	0.399	0.262-10-11
-1.5	21 190	3.87-102	0.0162	0.398	0.681.10-11
-1.0	21 770	9.51.102	0.0484	0.397	0.167.10-10
-0.8	22 220	1.35.103	0.0712	0.397	$0.237 \cdot 10^{-10}$
-0.6	22 890	1.91.103	0.100	0.397	0.336.10-10
0.4	23 840	2.72·10 ³	0.132	0.398	0.478.10-10
-0.2	25 1 50	3.89.103	0.166	0.399	$0.684 \cdot 10^{-10}$
0.0	26 890	5.62.103	0.195	0.399	0.989.10 ⁻¹⁰
0.1	27 930	6.79·10 ³	0.208	0.391	0.119.10 ⁻⁹
0.2	29 090	8.21.103	0.220	0.378	0.144-10-9
0.3	30 380	9.96.103	0.231	0.357	0.175.10 ⁻⁹
0.4	31 810	1.21.104	0.231	0.322	0.213.10 ⁻⁹
0.5	33 360	1.47.104	0.251	0.272	0.258.10 ⁻⁹

МОДЕЛЬ 7а

МОДЕЛЬ 8а

T Pg lg = a **Г**луч FBA 0.158-10-11 22 230 -2.5 3.57.101 0.00146 0.400 $0.452 \cdot 10^{-11}$ -2.0 22 300 1.02.102 0.00480 0.400 -1.5 22 500 2.77.102 0.0154 0.123.10-10 0.399 0.316.10-10 -1.0 23 110 7.13.102 0.0460 0.399 -0.8 0.0678 $0.456 \cdot 10^{-10}$ 23 590 1.03.103 0.399 $0.657 \cdot 10^{-10}$ -0.6 24 300 1.48.103 0.0959 0.399 -0.4 25 310 2.14.103 0.128 0.399 $0.947 \cdot 10^{-10}$ -0.2 26 700 3.09.103 0.161 0,400 $0.137 \cdot 10^{-9}$ 0.0 28 540 4.51.103 0.192 0.377 $0.200 \cdot 10^{-9}$ 0.1 $0.242 \cdot 10^{-9}$ 29 650 5.46.103 0.206 0.355 0.2 30 890 6.62.103 0.216 0.322 $0.293 \cdot 10^{-9}$ 0.3 8.05.103 0.228 0.356.10-9 32 260 0.276

Таблица VIII

291

Таблица IX

lg τ	Т	P _g	⊽луч	⊽ад	a
-2.5	9 940	4.23.101	0.00193	0.148	0.189.10-12
-2.0	9 960	8.89-101	0.00696	0.114	0.397.10-12
-1.5	10 050	1.77.102	0.0220	0.0985	0.792.10-12
-1.0	10 330	3.46-102	0.0629	0.0967	0.154-10-11
-0.8	10 540	4.54-102	0.0902	0.101	0.203.10-11
-0.6	10 860	6.01.102	0.123	0.111	0.268.10-11
0.4	11 310	8.11.102	0.165	0.130	0.362.10-11
0.2	11 930	1.16.103	0.172	0.164	0.520.10-11
0.0	12 760	1.67.103	0.200	0.217	0.745.10-11
0.1	13 250	2.00-103	0.214	0.244	0.896.10-11
0.2	13 800	2.43.103	0.216	0.259	0.108.10-10
0.3	14 420	2.99.103	0.189	0.254	0.134.10-10
0.4	15 090	3.86.103	0.204	0.233	0.172.10-10
0.5	15 830	4.94.103	0.198	0.208	0.221.10-10
0.6	16 630	6.33·10 ³	0.204	0.193	0.283 10-10
0.7	17 500	8.10.103	0.210	0.197	0.362.10-10
0.8	18 440	1.03.104	0.216	0.221	0.462.10-10
0.9	19 450	1.32.104	0.222	0.260	0.589.10-10
1.0	20 530	1.68.104	0.220	0.304	0.750.10-10
1.1	21 680	2.16.104	0.230	0.340	0.964.10-10
1.2	22 910	2.75.104	0.233	0.365	0.123.10-9
1.3	24 230	3.48.104	0.241	0.381	0.156.10-9
1.4	25 630	4.38.104	0.248	0.389	0.196.10-9
1.5	27 110	5.49.104	0.265	0.394	0.245.10-9
1.6	28 690	6.83.104	0.262	0.396	0.305.10-9
1.7	30 370	8.47.104	0.268	0.398	0.378.10-9
1.8	32 150	1.04.105	0.275	-0.386	0.466.10-9
1.9	34 040	1.28.105	0.281	0.366	0.573-10-9
2.0	36 040	1.57-105	0.288	0.331	0.701.10-9

МОДЕЛЬ 36

модели внешних слоев горячих звезд

Таблица Х

модель 46

lg =		Pg	Глуч	Vaiz	a
-2.5	12 340	6.31 10 ¹	0.00182	0.252	0.308.10-12
-2.0	12 380	1.40.102	0.00659	0.283	0.683.10-12
-1.5	12 490	2.85.103	0.0216	0.285	0.139.10-11
-1.0	12 820	5.67.102	0.0618	0.276	0.277.10-11
-0.8	13 090	7.48·10 ²	0.0878	0.274	0.365.10-11
-0.6	13 490	9.98·10 ²	0.118	0.268	0.487.10-11
-0.4	14 050	1.35.103	0.150	0.251	0.660.10-11
-0.2	14 820	1.94·10 ³	0.168	0.219	0.949-10-11
0.0	15 840	2.90.103	0.179	0.191	0.142.10-10
0.1	16 460	3.57.103	0.189	0.188	0.174.10-10
0.2	17 140	4.41.103	0.198	0.197	0.215.10-10
0.3	17 900	5.46.103	0.206	0.220	0.267.10-10
0.4	18 740	6.80·10 ³	0.213	0.256	0.332.10-10
0.5	19 660	8.48·10 ³	0.219	0.297	0.414.10-10
0.6	20 660	1.06.104	0.217	0.334	0.519.10-10
0.7	21 740	1.34.104	0.229	0.360	0.676.10-10
0.8	22 900	1.69.104	0.231	0.377	0.826.10-10
0.9	24 150	2.12.104	0.242	0.387	0.104.10-9
1.0	25 500	2.65.104	0.248	0.393	0.129-10-9
1.1	26 930	3.30.104	0.254	0.396	0.161.10-9
1.2	28 460	4.09-104	0.260	0.398	0.200-10-9
1.3	30 090	5.06.104 .	0.266	0.392	0.247.10-9
1.4	31 830	6.23.104	0.270	0.381	0.304.10-9
1.5	33 680	7.66.104	0.280	0.356	0.374.10-9
1.6	35 640	9.36-104	0.282	0.314	0.457.10-9

Таблица XI

	and the second sec				
lg τ	T	Pg	⊽луч	Гад	a
-2.5	14 840	7.26-101	0.00163	0.217	0.512.10-12
-2.0	14 890	1.76.102	0.00589	0.182	$0.124 \cdot 10^{-11}$
-1.5	15 020	3.88.102	0.0197	0.174	$0.274 \cdot 10^{-11}$
-1.0	15 430	8.18.102	0.0572	0.177	0.577.10-11
-0.8	15 750	1.11.103	0.0818	0.181	$0.778 \cdot 10^{-11}$
-0.6	16 220	1.50-103	0.111	0.188	0.106.10-10
-0.4	16 900	2.07.103	0.143	0.207	0.146-10-10
-0.2	17 850	2.92.103	0.171	0.246	$0.206 \cdot 10^{-10}$
0.0	19 060	4.19.103	0.195	0.303	0.296.10 ⁻¹⁰
0.1	19 800	5.08.103	0.205	0.331	0.358.10-10
0.2	20 620	6.22.103	0.197	0.355	0.438.10-10
0.3	21 540	7.45·10 ³	0.211	0.372	0.539.10 ⁻¹⁰
0.4	22 540	9.43·10 ³	0.222	0.383	$0.665 \cdot 10^{-10}$
0.5	23 650	1.16.104	0.230	0.390	$0.822 \cdot 10^{-10}$
0.6	24 850	1.44.104	0.238	0.394	0.102.10-9
0.7	26 150	1.78.104	0.247	0.397	0.125·10 ⁻⁹
0.8	27 550	2.19.104	0.258	0.398	0.154.10-9
0.9	29 050	2.69-104	0.262	0.397	0.190.10-9
1.0	30 670	3.30.104	0.267	0.383	0.233·10 ⁻⁹
1.1	32 390	4.04.104	0.273	0.360	0.285.10-9
1.2	34 240	4.94.104	0.277	0.320	0.349.10-9

модель 56

модели внешних слоев горячих звезд

lg =	T	Pg	Г.зуч	Vag	a	
-2.5	16 710	5.63.101	0.00154	0.372	0.992.10-12	
-2.0	16 760	1.47.102	0.00543	0.341	0.258.10-11	
-1.5	16 910	3.47.102	0.0181	0.306	0.611.10-11	
-1.0	17 370	7.73.102	0.0540	0.291	0.136.10-10	
-0.8	17 730	1.06.103	0.0784	0.298	0.186.10-10	
-0.6	18 270	1.46.103	0.108	0.315	0.257.10-10	
-0.4	19 030	2.03.103	0.138	0.339	0.357.10-10	
-0.2	20 070	2.87·10 ³	0.170	0.364	0.504.10-10	
0.0	21 460	4.16.103	0.190	0.383	0.732.10-10	
0.1	22 290	5.05.103	0.203	0.388	0.888.10-10	
0.2	23 220	6.14.103	0.214	0.393	0.108.10-9	
0.3	24 250	7.48.103	0.223	0.396	0.132.10-9	
0.4	25 360	9.14.103	0.232	0.397	0.161.10-9	
0.5	26 620	1.12.104	0.240	0.398	0.197.10-9	
0.6	27 980	1.37.104	0.248	0.399	0.241.10-9	
0.7	29 440	1.68-104	0.255	0.386	0.296.10-9	
0.8	31 020	2.05.10+	0.266	0.367	0.361.10-9	
0.9	32 710,	2.51.104	0.271	0.331	0.441.10-9	
1.0	34 530	3.05.104	0.278	0.278	0.537.10-9	

МОДЕЛЬ 66

Таблица XII

295

Таблица XIII

lg τ	T.	Pg	∇луч	Vag	a
-2.5	20 940	6.01·10 ¹	0.00148	0.400	0.106-10-11
-2.0	21 000	1.66.102	0.00498	0.399	0.292.10-11
-1.5	21 190	4.29.102	0.0163	0.398	0.754-10-11
-1.0	21 770	1.05.103	0.0487	0.396	0.184.10-10
0.8	22 220	1.48.103	0.0715	0.396	0.261.10-10
-0.6	22 890	2.10.103	0.100	0.397	0.369.10-10
-0.4	23 840	2.98.103	0.133	0.398	0.524.10-10
-0.2	25 150	4.25.103	0.167	0.398	0.748.10-10
0.0	26 890	6.12.103	0.198	0.399	0.108.10-9
0.1	27 930	7.36.103	0.212	0.390	0.130.10-9
0.2	29 090	8.87.103	0.224	0.379	0.156-10-9
0.3	30 380	1.07.104	0.236	0.360	0.189.10-9
0.4	31 810	1.30.104	0.246	0.326	0.228.10-9
0.5	33 360	1.57.104	0.256	0.277	0.276·10 ⁻⁹

модель 76

Таблица XIV

МОДЕЛЬ 86

lg τ	T	Pg	∇луч	⊽ад	a
-2.5	22 230	3.99.101	0.00146	0.400	0.177.10-11
-2.0	22 300	1.14.102	0.00481	0.400	0.505.10-11
-1.5	22'500	3.08.102	0.0155	0.399	0.136-10-10
-1.0	23 110	7.88.102	0.0461	0.399	0.349.10-10
-0.8	23 590	1.14.103	0.0683	0.399	0.503.10-10
-0.6	24 300	1.63.103	0.0965	0.399	0.723.10-10
-0.4	25 310	2.35.103	0.129	0.398	0.104.10-9
-0.2	26 700	3.39.103	0.163	0.393	0.150.10-9
0.0	28 740	4.91.103	0.195	0.377	0.218.10-9
0.1	29 650	5.93.103	0.208	0.358	0.262.10-9
0.2	30 890	7.17.10	0.222	0.327	0.318.10-9
0.3	32 260	8.68.103	0.234	0.282	0.384-10-9
7					

296