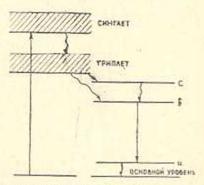
ՀԱՅԿԱԿԱՆ ՄՄՌ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ известия академии наук армянской сср

Маррин-Лирьбина, арминирацийн XVIII № 4 1965 Физико-математические изухи

ЭКСПЕРИМЕНТАЛЬНАЯ ФИЗИКА

М. Е. МОВСЕСЯН, В. А. ГЕВОРКЯН, Ф. П. САФАРЯН, П. Г. МЕЖЛУМЯН

ИССЛЕДОВАНИЕ ЛЮМИНЕСЦЕНЦИИ АЦЕТИЛАЦЕТОНАТОВ САМАРИЯ, ЕВРОПИЯ И ТЕРБИЯ


Исследование люминесценции органических комплексов редкоземельных элементов представляет собой большой интерес.

Поглощение и люминесценция новов редкоземельных элементов обусловлены переходами между уровнями электронной оболочки 4f, и так как эта оболочка хорошо защищена от внешнего взаимодействия заполненной оболочкой $5s^25p^6$, то люминесценция имеет линейчатую структуру. Такая же люминесценция наблюдается и у органических комплексов редкоземельных элементов [1-10].

В отличие от активированных кристаллов и растворов неорганинеских солей редких земель, у которых поглощение и люминесценин обусловлены нонами редкоземельных элементов, в органических помплексах поглощение и люминесценция обусловлены разными ча-

стями молекул. Люминесценция оргаинческих комплексов редкоземельных элементов связана с миграцией поглошенной энергии. Электроны органических комплексов поглощают энергию и совершают переходы с основного уровня на верхний синглетный уровень, затем безизлучения спускаются на триплетный уровень, откуда и совершается миграиня внергии к ионам редкоземельных элементов (фиг. 1).

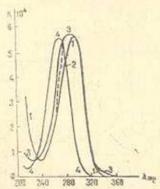
Этим и обуславливается большой Фиг. 1. Схема энергетических уровувантовый выход люминесценции. Наше исследование посвящено люминеспенции вцетилацетонатов.

ней комплексов. а. в. с-энергетические уровии редкоземельного иона.,

Экспериментальная часть

Ацетилацетон с некоторыми металлами и редкоземельными элементами дает комплексные соединения следующего строения

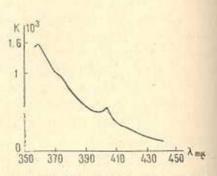
$$Me \left\langle \begin{pmatrix} O-C & CH_3 \\ O-C & CH \\ O-C & CH_3 \end{pmatrix} \right\rangle_3$$


Такие комплексы синтезированы некоторыми авторами [8-10]. В нашей лаборатории синтезированы комплексы с Sm. Eu. Ть по четодике, описанной в работе [8]. Для полученных соединений точки плавления после вервой перекристаллизации на 1,5-2 градуса был ниже, чем данные, приведенные в литературе. После вторичной верекристаллизации точки плавления комплексов совпадали с литеры турными данными.

Поглощение растворов комплексов редкоземельных элементов исследовалось с номощью кварцевого спектрофотометра СФ-4. Люмы несценция и в некоторых случаях (в видимой области спектра) поглощение исследовались на спектрографе ИСП-73 методом фотографической фотометрии. Охлаждение образцов производилось парам азота. Температура измерялась термопарой.

Полученные результаты и их обсуждение

а) Спектры поглошения.


Полученные спектры поглощения растворов Sm, Eu, Тb ацетиль цетонатов в этиловом спирте приведены на фиг. 2. Как видно из эти спектров, существуют две области поглощения. Максимумы поглошения исследованных ацетилацетонатов совпадают друг с другом и нь много смещены в сторону длинных длин волн по сравнению с поглощением раствора чистого ацетилацетона. Совпадение максимумов полащения ацетилацетонатов разных редкоземельных элементов еще разпоказывает, что это поглощение связано с органической частью комплекса

Фиг. 2. Зависимость коэффициента поглощения растворов ацетилацетонатов в этиловом спирте от длины волны.

- Sm—ацетилацетонат 0,1 °/ ...
 Eu—ацетилацетонат 0,19 °/ ...
- 3. Тb-ацетилацетонат 0,1 * ...

ацетилацетон 0,1 °/ ...

Фиг. 3. Зависимость коэффициента поглощения четырехпроцентного раствора Sm-ацегилацегоната в этиловом синрте от длины волик:

Поглощение самих редкоземельных ионов слабое и обычно в наблюдается на фоне интенсивного поглощения органической части комплекса. При больших концентрациях растворов оно наблюдается Например, на фиг. 3 приведен спектр четырехпроцентного раствов.

Sm-ацетилацетоната в этиловом спирте. На этом спектре хорошо шден максимум при 4030А°. Такой же максимум поглощения дают растворы неорганических солей Sm [7] и стекла активированные Sm [5−6].

Линейчатое поглощение, относящееся к редкоземельному иону, ваблюдалось также для Еп—ацетилацетоната. Максимумы поглощения в этом случае были на длинах волн 4660 A°, 4651 A° и 4638 A°. Этя максимумы не смещаются при температуре жидкого азота.

б) Спектры люминесценции.

Люминесценция Sm—ацетилацетоната достаточно сильная, особенно интенсивна линия $6453 \, \mathrm{A}^\circ$. При низкой температуре линии слектра люминесценции Sm—ацетилацетоната усиливаются и несколько сужаются.

В табл. 1 приведены длины воли линий и относительные интенсияности спектра люминесценции Sm—ацетилацетоната при темпераtype—185 °C.

Для Ец-ацетилацетоната при комнатной температуре наблюдается только несколько линий люминесценции. Но при температуре —185°C появляются новые линии, кроме того усиливаются и сужаются преживе линии. В табл. 2 приведены данные спектра люминесценции Ец-ацелацетоната при температуре—185°C.

		—185 °C	Табли	ца. 1	—185 °С ——Таблица 2					
I(A")	√(CM ⁻¹)	1 (A°)	$\gamma(cM^{-1})$	1), (A°)	√(cм ⁻¹)	1 λ (A°)	\ v(c.u^{-1})	Ĺ	
6120 6182 6196 6453 6506	16339 16176 16139 15497 15370	20 6534 20 6649 15 7003 25 7033 25 7033	15305 15203 14279 14219	2,5 8 5 5	5924 5959 6115 6137 6164 6196 6253	16880 16779 16433 16294 16223 16137 15992	6301 6326 1 6495 25 20 6546 15 6880 10 6962 5 7023	15868 15808 15396 15277 14534 14364 14239	1 1 3 3 3 3	

Особый интерес представляет спектр люминесценции Tb—ацетилацетоната. Люминесценция Tb—ацетилацетоната интенсивная при комнатной температуре, особенно интенсивны линии 5420 A°. 5446 A° и 5472 A°. В этой области заключена почти вся энергия люминесценции. Люминесценция для этого комплекса особенно усиливается при повижении температуры, наблюдаются смещения линий и перераспределение интенсивностей люминесценции. В табл. 3 и 4 приведены дляные Tb—ацетилацетоната как при комнатной температуре, так и при температуре—185°C.

Для всех исследованных комплексов, кроме люминесценции редкоземельных элементов, наблюдается люминесценция органической части в синей области спектра.

Таблица 3 20°C											
λ (A°)	$\gamma(cM^{-1})$	1	k (A)	$v(c.u^{-1})$	1	$\lambda\left(\mathbf{A}^{s}\right)$	√(cM ⁻¹)	1	λ (A°)	$\gamma(e.u^{-1})$	1
4867 4880 5420 5446 5472 5817 5845 5884 5914 5934	20275 20492 18450 18362 18275 17196 17126 16995 16909 16852	1 18 25 17 3 2 1	6170 6191 6227 6243 6250 6449 6523 6551 6593	16204 16152 16059 16018 16000 15506 15330 15265 15167	0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	4867 4880 4899 4907 4916 5420 5447 5473 5817 5845 5884 5914 5934	20752 20492 20412 20379 20342 18450 18361 18274 17191 17126 16995 16909 16852	3 3 3 3 19 17 25 3 1 10,5	6131 6145 6175 6191 6226 6243 6249 6449 6492 6525 6552 6588 6588	16310 16273 16194 16152 16060 16018 15999 15506 15436 15326 15264 15179 15179	0,5 0,5 1 1 1 0,5 0,5 0,5 0,5 0,5 0,5

Авторы выражают глубокую благодарность кандидату химических наук С. А. Варданяну за консультации по синтезу комплексов. Ереванский государственный

университет

Поступила 21 XII 1964

Մ. Ե. ՄՈՎՍԵՍՅԱՆ, Վ. Ա. ԳԵՎՈՐԳՏԱՆ, Ֆ. Պ. ՍԱՖԱՐՏԱՆ, Պ. Գ. ՄԵԺԼՈՒՄՅԱՆ

ՍԱՄԱՐԻՈՒՄԻ, ԵՎՐՈՊԻՈՒՄԻ ԵՎ ՏԵՐԲԻՈՒՄԻ ԱՑԵՏԻԼ-ԱՑԵՏՈՆԱՏՆԵՐԻ ԼՅՈՒՄԻՆԵՍՑԵՆՑԻԱՅԻ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆԸ

Udhnhnid

Սինսներված և ուսումնասիրված է Sm -, Eu -, Th — ացևարլ-ացևատկատների լյումինեսցենցիան սենլակի և — 185 C ջերմաստիճաններում։ Չափվել են լյումինեսցենցիայի գծերի ալիքի երկարունքյունը, հարարերական ինտենսիվունքյունը և կլանումը։ Որոշ մետաղօրդանական կոմպլեքսների մոտ, բացի կոմպլեքսի օրդանական մասի կլանումից, նկատվել է նաև հաղվագյուտ հողերին ընտրոշ գծային կլանում։

ЛИТЕРАТУРА

- Севченко А. И., Морочевский А. Г. Исследование люминеспенции внутрениях комплексных соединений самария и европия. Известия АН СССР, серия физ., 15, № 5, 628, 1951.
- Кузнецова В. В. Влияние температуры на спектральнодюминесцентные свойства комплексных соединений редких земель. ДАН БССР, 5, № 5, 1961.
- Севченко А. Н., Трофимов А. К. Исследование фотолюминесценции бензоидацетонатов европия и самария. ЖЭТФ, 21, пып. 2, 1961, 220.
- Кузнецова В. В., Севченко А. Н. Труды XIII Всесокового совещания по спектроскопии, июль 1960 г.
- Карапетян Г. О. Люминесценция стекол с редколемельными активаторами. Известия АН СССР, серия физ., 25, № 6, 1963.

- Вейнберг Т. И. Люминесценция стекол, содержащих медь, свинец и самарий. Известия АН СССР, серия физ., 13. № 1, 1949, 203.
- Зайдель А. Н., Ларинов Я. И. Спектроскопня растворов солей редких земель. УФН, 21, пып. 2, 1939. 211.
- Ануфриев Б. Б., Зайдель А. Н. О характере спектров поглощения бензоилацетопата самария ЖЭТФ, 24. вып. 1, 1953, 114.
- Серебряннаков В. В. Химия редкоземельных элементов, т. І. Изд. Томского университета. Томск, 1959.
- Whan R. E. and Crosby G. A. Luminescence Studies of Rare Earth Complexes Benroylacetonate and Dibenzoylmethide Chelates. Journ. of Molecular Spectroscopy, vol. 8, n. 4, April 1962.