2ИЗЧИЧИՆ ООВ ЭРЗПРОЗПРОЗОРОВОР ИЧИРЫТРИЗР ЗБОБЧИЭРС НЗВЕСТИЯ АКАДЕМИИ НАУКАРМЯНСКОЙ ССР

Мерени-имрьими, артпортасье XVII, No 5, 1964 Физико-математические науки

ЭКСПЕРИМЕНТАЛЬНАЯ ФИЗИКА

П. А. БЕЗИРГАНЯН

ЗАВИСИМОСТЬ ЛИФРАКЦИОННОЙ ШИРИНЫ СПЕКТРАЛЬНОЙ ЛИНИИ ОТ РАЗМЕРОВ ОТРАЖАЮЩЕГО КРИСТАЛЛА

Как известно, размеры и форма области вокруг узлов обратной решетки, в пределах которой значения интенсивности дифракционного максимума существенны, зависят от размеров и внешней формы отражающего кристалла.

Границы этой области в случае параллеленипедального кристалла обычно определяются из следующих условий:

$$h - \frac{1}{N_{1}} \leqslant i \leqslant h + \frac{1}{N_{1}}, \qquad k - \frac{1}{N_{2}} \leqslant \eta \leqslant k + \frac{1}{N_{2}},$$

$$l - \frac{1}{N_{3}} \leqslant \zeta \leqslant l + \frac{1}{N_{3}}, \qquad (1)$$

пе h, k, l — целые числа.

N₁, N₂ N₃ — числа атомов соответственно в направлениях *a*, *b* и *c*, ξ, η, ζ — компоненты вектора S/λ, параллельные трем осям обратной решетки, выраженные как кратные обратных

 $\vec{s} = \vec{S} - \vec{S}_0 - rge \ S$ и $\vec{S}_0 - единичные векторы направления распро$ странения отраженной и падающей волн соответственно.По (1) получается, что размер вышеуказанной области вокруг узлаобратной решетки в данном направлении, а следовательно, и шириназафракционного максимума в этом направлении, зависят только отразмера кристалла в этом же направлении.

Таким образом, по (1) получается, что узлы обратной решетки при малых кристаллах, превратятся в параллеленииеды со сторонами

$$\frac{\vec{a}^*}{N_1};$$
 $\frac{\vec{b}^*}{N_2};$ $\frac{\vec{c}^*}{N_3};$

жинчины которых обратно пропорциональны соответствующим вели-

Условия (1) получены на основании формулы для интенсивности

П. А. Безирганян

$$I = \frac{|\Phi_0|}{R^2} J_0,$$

где Jo-лауэвская функция интерференции

$$J_{0} = \frac{\sin^{2}(\pi N_{1}\xi)}{\sin^{2}(\pi\xi)} \frac{\sin^{n}(\pi N_{2}\eta)}{\sin^{2}(\pi\eta)} \frac{\sin^{n}(\pi N_{3}\eta)}{\sin^{2}(\pi\zeta)} .$$
(2)

Соотношения (1) и вытекающие из них выводы получены на основании следующих двух предположений:

 Величины ξ, η и ζ в области вокруг узлов обратной решетки, в пределах которой значения интенсивности дифракционного максимума существенны, то есть в пределах (1), независимы друг от друга.

 Волны, рассеянные различными атомами облученного объема в направлении точки наблюдения, считаются параллельными.

На основании этих предположений доказывается [1]-[4], что ширина спектральной линии (колец Дебая-Шеррера) зависит только от размеров кристалла в направлении нормали отражающих плоскостей.

В данной работе рассматривается характер независимости величин [‡], [¬] и ^ζ друг от друга и доказывается, что ширина спектральной линии (колец Дебая-Шеррера) зависит как от числа отражающих плоскостей (толщины кристалла в направлении нормали отражающих плоскостей), так и от размеров отражающих плоскостей.

§ 1. Характер независимости величин ξ, η и ζ друг от друга в области узла обратной решетки

ξ, η и ζ можно выразить через параметры кристаллической решетки следующим образом:

$$\xi = \frac{a \left(\cos \alpha_0 - \cos \alpha\right)}{\lambda},$$

$$\eta = \frac{b \left(\cos \beta_0 - \cos \beta\right)}{\lambda},$$

$$\zeta = \frac{c \left(\cos \gamma_0 - \cos \gamma\right)}{\lambda},$$

(3)

где a, b и c — трансляции прямой решетки, α_0, β_0 и γ_0 — углы между вектором \vec{S}_0 и векторами \vec{a}, \vec{b} и \vec{c} соответственно, α, β и γ — углы между вектором \vec{S} и векторами \vec{a}, \vec{b} и \vec{c} соответственно.

Как известно, между углами «, э и т существует соотношение; которое в случае прямоугольных координат имеет вид

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1.$$
 (4)

Следовательно, при постоянстве одного из этих углов с изменением второго третий не может не изменяться. Это означает, что при

данном S₀ с изменением одной из величин ξ, η и C остается неизменпой только одна из остальных двух.

Выражение (2) представляет собой произведение трех множителей типа

$$\frac{\sin^2 NZ}{\sin^2 Z},$$

которые, согласно (3) и (4), независимы друг от друга: с изменением одного из углов α, β и т, то есть с изменением направления рассеяния, остается неизменным только один из этих множителей.

"Размер" узла обратной решетки, например, в направлении \vec{b}^* обычно определяется расстоянием от узла обратной решетки в направлении \vec{b}^* до той точки, гле интерференционная функция J_0 падает до нуля". Эта точка от узла обратной решетки, согласно (2), находится на расстоянии \vec{b}^*/N_2 , то есть "размер" узла обратной решетки в направлении \vec{b}^* обратно пропорционален числу частиц кристалла в направлении \vec{b}^* .

Допустим, что плоскость векторов \vec{S}_0 и \vec{S} (плоскость падения) совпадает с плоскостью векторов \vec{a} н \vec{b} , тогда (3) примет вид

$$\xi = \frac{a \left(\cos \alpha - \cos \alpha_{0}\right)}{\lambda},$$

$$\eta = \frac{b \left(\sin \alpha + \sin \alpha_{0}\right)}{\lambda},$$
(5)

Как видно из последнего, при данном а, с изменением множителя

$$\frac{\sin^2\left(\pi N_2\eta\right)}{\sin^2\left(\pi\eta\right)}$$

изменяется и множитель

$$\frac{\sin^2(\pi N_1 \xi)}{\sin^4(\pi \xi)} .$$
 (6)

Следовательно, если N₁ значительно больше N₂, то с изменением у (угла а) множитель (6), следовательно, и J₀ может принимать нулевое значение до того, как у примет значение

 $\eta = \frac{1}{N_*}$.

 Интерференционная функция J, в узлах обратной решетки имеет максимальное значение. то есть "размер" узла обратной решетки в направлении \vec{b}^* при данн \vec{S}_0 может быть меньше, чем \vec{b}^*/N_2 .

Таким образом, в данном случае "размер" узла обратной решет в направлении \vec{b}^* не только зависит от размера кристалла в напра

лении b, но и от размера кристалла в направлении a.

Выражения (5) показывают, что с изменением одной из велич к и т может остаться неизменной другая только в том случае, ког одновременно изменяются углы а и а₀.

Этот случай мы рассмотрим более детально.

§ 2. Зависимость ширины колец Дебая-Шеррера от размеров частиц

В работах [1]—[4] выведены различные формулы для определния ширины колец Дебая-Щеррера в зависимости от размеров кр сталлов (числа отражающих плоскостей).

По мнению авторов с помощью этих формул можно определи размеры кристаллов, перпендикулярные к отражающим плоскостям

Докажем, что дифракционные ши ны колец Дебая-Шеррера зависят толг от наименьших размеров криста, в плоскости падения и что с помош дифракционных ширин этих колец мож определить только эти размеры.

Пусть плоскость падения (плоско векторов \vec{S}_0 и \vec{S}) совпадает с плос стью векторов \vec{a} и \vec{c} и вектор \vec{S}_0

ставляет угол во с вектором а (фиг. 1), тогда для интерференционной функции Ja получим

$$J_0 = N_2^2 \frac{\sin^2 \left[\frac{ak \left(\cos \theta - \cos \theta_0\right)}{2} N_1 \right]}{\sin^2 \left[\frac{ak \left(\cos \theta - \cos \theta_0\right)}{2} \right]} \frac{\sin^2 \left[\frac{ck \left(\sin \theta + \sin \theta_0\right)}{2} N_3 \right]}{\sin^2 \left[\frac{ck \left(\sin \theta + \sin \theta_0\right)}{2} \right]},$$

где 0-угол между векторами а и S.

 J_0 принимает максимальное значение при $b=b_0$ и нулевое з чение при

$$\frac{ak\left(\cos\theta_{1}-\cos\theta_{0}\right)}{2} = \pm \frac{\pi}{N_{1}}, \qquad (\theta = \theta_{1})$$

или при

О дифракционной ширине спектральной линии

 $\frac{ck\left(\sin\theta_3 + \sin\theta_0\right)}{2} = \pm \frac{\pi}{N_3} + ck\sin\theta, \qquad (\theta = \theta_3).$

В случае

$$\theta_1 = \theta_0 + \Delta \theta_1$$
 is $\theta_3 = \theta_0 + \Delta \theta_3$

из последних соотношений получим

$$\Delta \theta_1 = \frac{\lambda}{N_1 a \sin \theta_0} = -\frac{\lambda}{L_1 \sin \theta_0}, \qquad (8)$$

$$\Delta \theta_{a} = \frac{\lambda}{N_{a} c \cos \theta_{0}} = \frac{\lambda}{L_{a} \cos \theta_{0}}, \qquad (9)$$

где L₁ и L₃ — размеры кристалла в направлении а и с. Как видно из (7)—(9), при

$$\cos\theta - \cos\theta_0 = 0,$$

то есть при постоянном 5, что выполняется при одновременном увеличении или уменьшении углов θ_0 и 6, ширина спектральной линии определяется условием (9).

При условии же

$$\frac{ck\left(\sin \theta + \sin \theta_0\right)}{2} = n\pi = \text{const},$$

то есть при постоянном ъ, что выполняется тогда, когда с увеличением одной из величин θ или θ_0 другая уменьшается, ширина спектральной линии опредежяется условием (8). Угловая ширина кольца Дебая-Шеррера равна $2\Delta\theta_2$, если $\Delta\theta_2 > \Delta\theta_1$, в противном случае, то есть в случае $\Delta\theta_3 < \Delta\theta_1$, равна $2\Delta\theta_1$.

Из (8) и (9) следует

$$\frac{\Delta \theta_{3}}{\Delta \theta_{1}} = \frac{L_{1} \sin \theta_{0}}{L_{3} \cos \theta_{0}} = \frac{L_{1}}{L_{3}} \operatorname{tg} \theta_{0}. \tag{10}$$

При $\theta_0 = 45^\circ$ из (10) получим

$$\frac{\Delta \theta_{a}}{\Delta \theta_{1}} = \frac{L_{1}}{L_{a}} \,. \tag{11}$$

Из (8)-(11) можно сделать следующие выводы:

 Дифракционная ширина кольца Дебая-Шеррера зависит от угла Вульфа-Брега и от размеров кристалла только в плоскости падения и не зависит от размера кристалла в направлении нормали к плоскости падения.

 Дифракционная ширина кольца Дебая-Шеррера определяется размером кристалла в направлении нормали отражающих плоскостей до тех пор, пока

$$\frac{L_1}{L_3} \operatorname{ig} \mathfrak{0}_0 < 1, \tag{12}$$

то есть когда $\Delta \theta_3 < \Delta \theta_1$. В противном случае, то есть в случае 5 Известия АН, серия физ-мат. наук. № 5

$$\frac{L_1}{L_3} \operatorname{tg} \theta_0 > 1,$$

дифракционная ширина кольца зависит от размеров отражающих плоскостей в направлении плоскости падения. Таким образом, получается, что в случае, когда удовлетворяется условие (12), ширина кольца зависит от числа отражающих плоскостей, а в случае удовлетворения условия (13) ширина кольца зависит только от размеров отражающих плоскостей в плоскости падения.

3. (12) и (13) показывают, что при очень малых углах (0 ≪ 90°) дифракционная ширина кольца определяется размером кристалла в направлении нормали отражающих плоскостей, а при очень больших углах (0 ~ 90°) зависит от размеров отражающих плоскостей в направлении плоскости падения.

 Из (8) и (9) для линейной дифракционной ширины кольца Дебая-Шеррера получим

$$B_1 = R \cdot 2\Delta \theta_1 = \frac{2R\lambda}{L_1 \sin \theta_0}, \qquad (14)$$

(13)

$$B_{3} = R \cdot 2\Delta \theta_{3} = \frac{2R\lambda}{L_{3}\cos\theta_{0}}, \qquad (15)$$

откуда для размеров кристалла получим

$$L_{1} = \frac{2R\lambda}{B_{1}\sin\theta_{0}},$$
$$L_{2} = \frac{2R\lambda}{B_{3}\cos\theta_{0}}.$$

Таким образом, в случае (12) с помощью ширины кольца Дебая-Шеррера определяется L₁, а в случае (13)—L₂.

Дифракционная полуширина кольца определяется из условий

$$\frac{1}{2} = \frac{J_0(\theta_0 + \Delta \theta)}{J_0(\theta_0)} = \frac{1}{N_1 N_2} \frac{\sin^2 \left[L_1 \frac{\sin \theta_0 \cdot \Delta \theta}{2} k \right]}{\sin^2 \left[\frac{\sin \theta_0 \cdot \Delta \theta}{2} k \right]} \frac{\sin^2 \left[L_3 \frac{\cos \theta_0 \cdot \Delta \theta}{2} k \right]}{\sin^2 \left[\frac{\cos \theta_0 \cdot \Delta \theta}{2} k \right]},$$
(16)

Как видно, дифракционная полуширина зависит как от L₁, так в от L₃, то есть от размеров кристалла в двух взаимоперпендикулярных направлениях в плоскости падения. Полуширина, определяемая формулой (16), гораздо меньше полуширины, определяемой только однам множителем

$$\frac{1}{2} = \frac{J_0(\theta_0 + \Delta \theta)}{J_0(\theta_0)} = \frac{\sin^2 \left[L_0 \frac{\cos \theta_0 \cdot \Delta \theta}{2} k \right]}{\sin^2 \left[\frac{\cos \theta_0 \cdot \Delta \theta}{2} k \right]} \frac{1}{N_3^2}.$$
(17)

О дифракционной ширине спектральной линии

(8), (9), (14) и (15) получены для частного случая, когда плоскость падения совпадает с плоскостью главных направлений a и b.

В общем случае для отражающих плоскостей (*hkl*), если кристалды имеют форму параллелепипеда со сторонами N_1a , N_2b и N_3c и если толщину кристалда в направлении нормали к отражающей плоскости характеризовать длиной отрезка, проходящего через две противоположные грани [10], то вместо (8) и (9) получим

$$\Delta \theta_1 = \frac{\lambda}{N_1 a_1 \sin \theta_0} = \frac{\lambda}{P \sin \theta_0}, \qquad (18)$$

$$\Delta \theta_{2} = \frac{\lambda}{\cos \theta_{0}} \frac{\sum}{\sqrt{\frac{h^{2}}{a^{2}} + \frac{k^{2}}{b^{2}} + \frac{l^{2}}{c^{2}}}},$$
 (19)

где $\sum = \frac{h}{N_1 a^2}$, когда отрезок, характеризующий толщину кристалла,

проходит через грани *bc* $= \frac{k}{N_2 b^2}, \text{ когда проходит через грани$ *ac* $}$ $<math display="block">= \frac{k}{N_3 c^2}, \text{ когда проходит через грани$ *ab* $},$

> Р – размер кристалла в плоскости падения в направлении отражающих плоскостей.

Как видно (9) и (19) совпадают соответственно с формулами Шеррера-Селякова [2], [3] и Лауэ [1].

Таким образом, неудовлетворительность формул Шеррера, Селякова и Лауэ в том, что в расчете ширины кольца в этих формулах не учтены соответственно условия (8) и (18).

Рассмотрим численный пример. Допустим излучение $CaK_{*_{1}}$ ($\lambda = 1,5375$) падает на кристалл кальцита и отражается от плоскостей поверхности скола (111). Пусть размер кристалла в направлении нормали отражающих плоскостей будет 10^{-4} см, а размер отражающих плоскостей в направлении плоскости падения 10^{-5} см. Имея в виду, что межплоскостные расстояния этих плоскостей при первом порядке отражения равны $d_1 = 3,0290$ Ű, для угла Вульфа-Брэгга получим $\vartheta_1 = 14^\circ 29'$. Тогда согласно (8) и (9) для $\Delta \vartheta_1$ и $\Delta \vartheta_3$ получим

$$\Delta \theta_1 = \frac{1,5375 \cdot 10^{-8} \, c.m}{10^{-4} \, c.m \cdot 0.25} \,, \qquad \Delta \theta_2 = \frac{1,5375 \cdot 10^{-8} \, c.m}{10^{-5} \, c.m \cdot 0.25} \,.$$

откуда Δθ₃ > Δθ₁, то есть в данном случае дифракционной шириной является Δθ₃, которая на порядок больше, чем Δθ₁.

Таким образом, в рассматриваемом случае дифракционная ширана обусловлена не размером кристалла в направлении нормали отражающих плоскостей, а размером отражающих плоскостей в направ-

П. А. Безирганян

лении плоскости падения. Наоборот, если с помощью дифракционной ширины спектральной линии определить размер кристалла, то в рассматриваемом случае определяется размер отражающих плоскостей в направлении плоскости падения, что на порядок меньше от размера кристалла в направлении нормали отражающих плоскостей. Следовательно, если согласиться с мнениями авторов [1]-[4], то при определении размера кристалла в направлении нормали отражающих плоскостей в данном частном случае можно ошибиться на порядок.

§ 3. Более строгое решение задачи

При учете разности фаз, возниклющих из-за непараллельности волн, рассеянных различными атомами облучаемого объема в направлении точки наблюдения *M*, для амплитуды отраженной волны вместо лауэвского выражения (см. [5]-[7])

$$A = \frac{f}{R} \left(\frac{e^{z}}{mc^{z}} \right) \sum \exp\left[-ik(\vec{S} - \vec{S}_{o}) \vec{r} \right]$$

получается выражение

$$A = \frac{f}{R} \left(\frac{e^2}{mc^2} \right) \sum \exp\left\{ -ik \left[\left(\vec{S} - \vec{S}_0 \right) \vec{r} + \frac{r^2}{2R} - \frac{(rS)^2}{2R} \right] \right\}, \quad (20)$$

где \hat{S}_0 — единичный вектор, указывающий направление падения;

- S единичный вектор, указывающий направление точки наблюдения от начала координат O.
- R среднее расстояние облучаемых атомов от точки наблюдения. Падающая волна плоская.

Пусть одна из отражающих плоскостей совпалает с плоскостью XOY, а плоскость, содержащая S и S₀, — с плоскосью XOZ. Если S₀ и S составляют с осью X углы соответственно θ₀ и θ, то для амплитуды рассеянной волны в точке наблюдения M получим

$$A = \frac{f}{R} \frac{\varepsilon^2}{mc^2} \sum \exp\left\{-ik \left[\left(\cos\theta - \cos\theta_0\right) x + \left(\sin\theta - \sin\theta_0\right) z + \frac{y^2}{2R} + \frac{x^2 \sin^2\theta}{2R} + \frac{z^2 \cos^2\theta}{2R} - xz \sin 2\theta \right] \right\}.$$
 (21)

Заменяя суммирование интегрированием, для вмплитуды рассеянной волны получим (при плоской падающей волне)

$$A \quad \frac{f}{R} \frac{e^{z}}{mc^{z}} n \int_{0}^{U} \int_{0}^{V} \int_{0}^{w'} \exp\left\{-ik \left[\left(\cos\theta - \cos\theta_{0}\right)x + \left(\sin\theta - \sin\theta_{0}\right)z + \frac{y^{2}}{2R} + \frac{x^{2}\sin^{2}\theta}{2R} - xz\sin2\theta\right]\right\} dxdydz,$$
(22)

где n — число атомов в единице объема.

О дифракционной ширине сцектральной линии

При точечном источнике * для этой же амплитуды получим (см. [8])

$$A = \frac{f}{R_1 R_2} \frac{e^2}{mc^2} n \iint \exp\left\{-ik \left[-\vec{r} (\vec{S} - \vec{S}_0) + \frac{r^2}{2} \left(\frac{1}{R_1} + \frac{1}{R_2}\right) - \frac{(\vec{S}_0 \vec{r})^2}{2R_1} - \frac{(\vec{S}r)^2}{2R_2}\right]\right\} dx dy dz,$$
(22)

Если ориентировка векторов S и S₀ относительно координатных осей x, y, z та же самая, что и в случае падающей плоской волны, то из (23) получим

$$A = \frac{f}{R_1 R_2} \frac{e^2 n}{m c^2} \int_{0}^{U} \int_{0}^{V} \int_{0}^{W} \exp\left\{-ik\left[\left(\cos\theta_0 - \cos\theta\right)x + \left(\sin\theta_0 - \sin\theta\right)z + \frac{y^2}{2}\left(\frac{1}{R_1} + \frac{1}{R_2}\right) + \frac{x^2}{2}\left(\frac{\sin^2\theta_0}{R_1} + \frac{\sin^2\theta}{R_2}\right) + \frac{z^2}{2}\left(\frac{\cos^2\theta_0}{R_1} + \frac{\cos^2\theta}{R_2}\right) - xz\left(\sin2\theta_0 + \sin2\theta\right)\right]\right\} dxdydz,$$
(24)

В (22) и (24) U, V, W размеры кристалла соответственно в направлениях x, y н z.

Если плоскость падения (содержащую \tilde{S}_0 и \tilde{S}) вращать вокруг оси г так, чтобы она совпадала с плоскостью гоу, то для амплитуды рассеянной волны получим:

при падающей плоской волне

$$A = \frac{f}{R} \frac{e^2 n}{mc^2} \int_0^U \int_0^V \int_0^W \exp\left\{-ik \left[\left(\cos\theta - \cos\theta_0\right)y + \left(\sin\theta + \sin\theta_0\right)z + \frac{x^2}{2R} + \frac{y^2\sin^2\theta}{2R} + \frac{z^2\cos^2\theta}{2R} - xz\sin2\theta \right] \right\} dxdydz,$$
(25)

при падающей сферической волне:

$$A = \frac{f}{R_1 R_2} \frac{e^2 n}{m c^2} \int_{0}^{U} \int_{0}^{V} \int_{0}^{W} \exp\left\{-ik \left[(\cos \theta - \cos \theta_0) y + (\sin \theta - \sin \theta_0) z + \frac{x^2}{2} \left(\frac{1}{R_1} + \frac{1}{R_2}\right) + \frac{y^2}{2} \left(\frac{\sin^2 \theta_0}{R_1} + \frac{\sin^2 \theta}{R_2}\right) + \frac{z^2}{2} \left(\frac{\cos^2 \theta_0}{R_1} + \frac{\cos^2 \theta}{R_1}\right) - yz \left(\sin 2\theta_0 + \sin 2\theta\right) \right] dxdydz.$$
(26)

 Естественные источники, являющиеся совокупностями точечных источников атомы можно считать точечными источниками рентгеновских лучей).

П. А. Безирганян

Нетрудно догадаться, что (22) и (24) в функции от 6 определяют "размеры" узла обратной решетки в направлении \vec{a}^* при плоской и сферической падающих волнах соответственно.

Таким же образом (25) и (26) определяют "размеры" узла обратной решетки в направлении \vec{b}^* при плоской и сферической падающих волнах соответственно. Для определения "размера" узла обратной решетки в направлении \vec{c}^* надо плоскость падения (плоскость векторов \vec{S}_0 и \vec{S}) вращать вокруг оси *ох* на 180° и в выражениях (22) и (24) х заменить через *z*, а *z* через *x*:

в случае падающей плоской волны

$$A = \frac{f}{R} \frac{e^2 n}{mc^2} \int_{\theta}^{U} \int_{0}^{V} \int_{\theta}^{W} \exp\left\{-ik\left[\left(\sin\theta - \sin\theta_0\right)x + \left(\cos\theta - \cos\theta_0\right)z + \frac{y^2}{2R} + \frac{x^2\cos^2\theta}{2R} - \frac{z^2\sin^2\theta}{2R} - xz\sin^2\theta\right]\right\} dxdydz,$$
(27)

в случае падающей сферической волны

$$A = \frac{f}{R_1 R_2} \frac{e^2 n}{mc^2} \int_0^U \int_0^V \int_0^W \exp\left\{-ik \left[(\sin \theta - \sin \theta_0) x + (\cos \theta - \cos \theta_0) z + \frac{y^2}{2} \left(\frac{1}{R_1} + \frac{1}{R_2}\right) + \frac{x^2}{2} \left(\frac{\cos^2 \theta_0}{R_1} + \frac{\cos^2 \theta}{R_2}\right) + \frac{z^2}{2} \left(\frac{\sin^2 \theta_0}{R_1} + \frac{\sin^2 \theta}{R_2}\right) - xz \left(\sin 2\theta_0 + \sin 2\theta\right) \right] dx dy dz.$$
(28)

Как видно из (22)—(28), как при плоской, так и при сферической падающих волнах при изменении размера кристалла в одном направлении изменяются "размеры" узла обратной решетки во всех направлениях. Действительно, например, из (22), (25) и (27) видно, что при изменении размера кристалла в направлении z "размер" узла обратной решетки, а следовательно, и размеры дифракционного максимума изменяются не только в направлении \vec{c}^* , но и в направлениях \vec{a}^* и \vec{b}^* .

Вышеизложенное можно более наглядно показать численным примером. Для этого определив из (28) | A|² и приведя интегралы к виду интегралов Френеля, можно построить график зависимости /A/² от Θ.

Такие расчеты приведены в [9], и здесь не будем повторять их.

Выводы

Из вышеприведенных расчетов можно сделать следующие выводы.

О дифракционной шприне спектральной линии

 Дифракционная ширина спектральной линии при неподвижном монокристалле и плоско-параллельном падающем пучке зависит только от наибольшего размера кристалла в плоскости падения, и с помощью этих ширин спектральных линий можно определить только указанный размер.

2. Дифракционная ширина спектральной линии при плоскопараллельном падающем пучке и качающем кристалле или при расходящемся падающем пучке и неподвижном кристалле зависит от наименьшего размера кристалла в плоскости падения. В этом случае с помощью дифракционных ширин спектральных линий можно определить только этот наименьший размер кристалла.

 Дифракционная ширина колец Дебая-Шеррера зависит от наиченьших размеров кристалла в плоскости падения, следовательно, с помощью дифракционной ширины не всегда определяются размеры кристаллов в направлении нормали отражающих плоскостей (см. [8]-[13]).

Ереванский государственный университет

Поступила 17 XII 1963

9. Ա. ԲԵԶԻՐԳԱՆՅԱՆ

ՍՊԵԿՏՐԱԼ ԳԾԻ ԳԻՖՐԱԿՑԻՈՆ ԼԱՅՆՈՒԹՅԱՆ ԿԱԽՈՒՄԸ ԱՆԳՐԱԳԱՐՉՆՈՂ ԲՏՈՒՐԵՂԻ ՉԱՓԵՐԻՑ

Ամփոփում

Սովորաբար համարում են, որ հակադարձ ցանցի հանդույցների չափերը հակադարձ համեմատական են բյուրեղի չափերին։

Տվյալ աշխատության մեջ ապացուցվում է, որ

 ռենադենյան սպնկտրալ գծի դիֆրակցիոն լայնունյունը անշարժ բյուբիդի և հարն զուգահեռ ընկնող ճառագայնների դեպքում կախված է միայն անկման հարնունյան մեջ բյուրեղի ամենամեծ չափից և սպեկտրալ գծի այդ լայնունյան միջոցով կարելի է որոշել միայն վերոհիշյալ չափերը,

2. Տարի ղուղաճեռ սկղբնական փնջի և տատանվող բյուրեղի կամ տարածիավող սկղբնական փնջի և անշարժ բյուրեղի դեպբում սպեկտրալ գծի ղիֆբակցիոն լայնունյունը կախված է անկման ճարնունյան մեջ բյուրեղի փոբրապույն չափից։ Այդ դեպբում սպեկտրուլ գծի դիֆրակցիոն լայնունյան միջոցով «տոշվում է բյուրեղի փոբրադույն չափը,

3. Գեբայ-Շեռերի օղակների լայնունյունը կախված է անկման հարնունյան մեջ բյուրեղի ամենափորը չափերից, հետևաբար, օղակի դիֆրակցիոն լայնունյան միջոցով միշտ չէ, որ որոշվում է բյուրնդի չափը անդրադարձնող հարնունյուններին ուղղահայաց ուղղունյամը։

ЛИТЕРАТУРА

- Laue M., Lorentz, Factor und Intensitätsverteilung in Debey-Scherer Ringen, Zs. i. kristallogr., 84, 1926, 115.
- 2. Scherrer P., Nachr. von d. könig. Ges. d. Wiss. zu Gött, 98, 1918.
- Селяков Н. Рентгенографический метод определения размеров кристаллов в мелкокристаллическом веществе. Ж. Р. Ф. Х. О., ч. физ., 56, 71, Л., 1924.
- Колпинский В. А. Элементарный вывод выражения для ширины кольца Дебай--Шеррера, ЖЭТФ, 6, вып. 8, 1936.
- 5. Безирганян П. А. Диссертация, МГУ, 1954.
- Безирганян П. А., Боровский Н. Б. Дифракция рептгеновских лучей на изотпутих кристалагах. Труды Ереванского гос. университета, серия физ-маг., 48, вып. 2, 1955.
- Безирганян П. А. Рассеяние рентгеновских лучей в газах, жидкостях и аморфных твердых телах. ЖТФ, вып. 6, 1962.
- Безирганян П. А., Акритов А. Г. Зависимость интенсивности отраженных вольот размеров отражающего монокристалла. Известни АН АрмССР, серия физ.мат. наук, пып. 3, 1962.
- Безирганян П. А., Никоян Ж. О. Зависимость ширины дифракционных максямумов от размеров кристалла. Кристаллография, 7, вып. 3, 1963.
- Катайгородский А. И. Рентгеноструктурный анализ мелкокристаллических и аморфных тел. М., 1952.