# дизничи и по транрапры при при тризь ведечитер известия академии наукармянской сср

Зъпрем-бирьбит. срипсропоббыт XVII, № 4, 1964 Физико-математические науки

АСТРОФИЗИКА

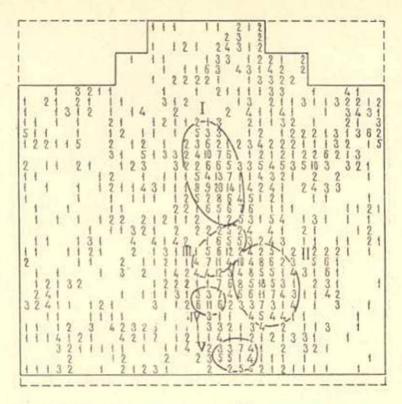
### И. Д. Караченцев

## Несколько морфологических характеристик скоплений галактик в Геркулесе

После работы Эйбелла [1] стало известно, что многочисленные группы и скопления галактик в Геркулесе образуют единую физическую систему—сверхскопление.

На южном конце этой сверхсистемы находится неправильное скопление ( $a=16^h$   $02^m9$ ,  $\delta=+17^\circ$  54'), недавно изученное Бэрбиджами [2]; в каталоге Эйбелла оно имеет номер 2151. По 15 галактикам средняя лучевая скорость скопления равна  $10775\frac{\kappa M}{ce\kappa}$  с дисперсией

радиальных скоростей  $631 \, \frac{\kappa_M}{ce\kappa}$  . Бэрбиджи полагают, что скопление вестабильно и распадается.


Скопление Abell 2151 и окружающая его область неба изучались нами следующим способом. На карте Паломарского атласа, центр которой приблизительно соответствовал центру скопления, определялись координаты, угловые размеры и типы галактик до 18,<sup>то</sup>1. На этой площади (около 32 квадратных градусов) обнаружено 474 галактики ярче 16,<sup>то</sup>6 и 1580 галактик ярче 18,<sup>то</sup>1. Усредненные результаты подсчетов приведены на фиг. 1 и 2.

Анализ днаграммы распределення галактик показывает, что в этой области имеется не одно, а, по крайней мере, пять скоплений. В центре каждого скопления находятся пары или цепочки галактик, окутанные светящейся материей. Скопления отличаются друг от друга степенью концентрации и типом населения.

Вэрбиджами изучено скопление 1. Для скоплений II и III известны только средние лучевые скорости:  $V_{II} = 12500 \frac{\kappa M}{ce\kappa}$ ,  $V_{III} = 11700 \frac{\kappa M}{ce\kappa}$ . Номера II и III по каталогу Эйбелла соответственно 2147 и 2152.

Займемся подробнее скоплением Геркулес 1. Распределение плотности числа галактик и изменение их средней звездной величины илоль раднуса скопления приведены в табл. 1. Звездные величины галактик оценивались по эмпирической зависимости  $m \sim \lg d$ .

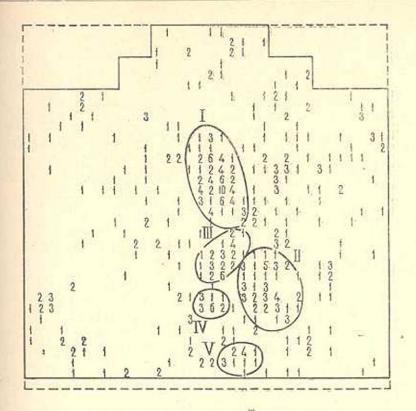
Из табл. 1 видно, что распределение плотности вдоль радиуса (усредненное по азимуту) довольно регулярное. Сегрегация ярких и



Фиг. 1. Распределение газактик ярче 18, 1. Контуры Паломарской карты обведены пунктиром. Арабские цифры обозначают числа галактик в квадратах со стороной 11',2, римские—номера скоплевий.

|                                                                                       |                                                          |                                                                  | Таблица 1                                                                                           |  |  |
|---------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|
| r                                                                                     | $N_r$                                                    | N                                                                | monul                                                                                               |  |  |
| 0'-5'<br>5-10<br>10-15<br>15-20<br>20-25<br>25-30<br>30-35<br>35-40<br>40-45<br>45-50 | 15<br>28<br>21<br>27<br>25<br>30<br>29<br>34<br>19<br>27 | 690<br>420<br>193<br>175<br>128<br>126<br>102<br>104<br>42<br>65 | 15 <sup>m</sup> 82<br>16,20<br>16,04<br>16,04<br>16,48<br>16,32<br>16,32<br>16,48<br>16,83<br>16,66 |  |  |

 г-раднус кольцевой зоны минутах дуги,


 $N_r$  —число галактик в зоне ярче  $18^m1$ .

 №—число гадактик на квадратный градус,

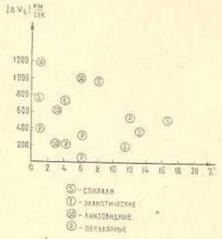
талактик зоны.

слабых гадактик выражена отчетливо. Последний факт противоречит утверждению Цвикки [3], будто бы сегрегация имеет место только в правильных сферических скоплениях, а в неправильных она едва заметна, (Сегрегации приписывался большой динамико-эволюционный смысл: она служила указанием на степень стацнонарности скопления).

Оценим массу и светимость Геркулеса 1. Интегральная светимость скопления вычислялась по зависимости  $m \sim \lg d$ , прокалиброванной галактиками фона с известными звездными величинами. С учетом галактического (0, 34) и межгалактического (0, 31) ослабления света суммарная светимость скопления равна 1,8·10<sup>12</sup>L<sub>☉</sub>.



фиг. 2. Распределение галактик ярче 16, 6. Обозначения те же, что и на фиг. 1.


Массу скопления можно оценить на основании теоремы вириаларазными способами: по подсчетам галактик в кольцевых зонах, приведенным в табл. 1, (это дает нижний предел массы), по подсчетам галактик в параллельных полосах [4] (верхний предел массы). Соответствующие расчеты дали в первом случае  $M = 9,45 \cdot 10^{14} M_{\odot}$ , а вовтором  $-1.07 \cdot 10^{15} M_{\odot}$ . Среднее значение равно  $(1.00 \mp 0.06) \cdot 10^{15} M_{\odot}$ . Для отношения массы к светимости имеем  $556 \frac{M_{\odot}}{L_{\odot}}$ . Эта оценка, превышающая нормальное значение в десятки раз, подтверждает вывод Бэрбиджей о нестабильности скопления.

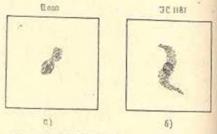
Если скопление расширяется, то с удалением от центра дисперсия лучевых скоростей должна уменьшаться из-за эффекта проекции. На фиг. З приведены для 15 галактик лучевые скорости и расстояния от центра. Как видно из рисунка, ожидаемый эффект действительноимеет место.

Заметим, что у пекулярных галактик дисперсия скоростей сравнительно невелика. Если для E, SO и S дисперсия равна  $730 \frac{\kappa M}{ce\kappa}$ , то для пекулярных—всего  $(300 \mp 140) \frac{\kappa M}{ce\kappa}$ . Такая же закономер-

ность обнаружена и в других скоплениях: Coma, Virgo, Corona Borealis.

С точки зрения расширяющегося скопления становится понятной сегрегация ярких и слабых галактик. В процессе совместного образования менее массивные галактики получают большую скорость и удаляются на большие расстояния, чем яркие. Это же подтверждает




Фиг. 3. Зависимость дисперсии скоростей галактик от расстояния от центра скопления.

корреляционная зависимость между  $\Delta V_r$  и угловым размером галактик. Коэффициент корреляции получился равным—0,15. Для пространственной скорости корреляция должна быть более тесной.

Любопытво отметить, что в скоплениях I—V физические пары и цепочки галактик ориентированы вдоль направления север—юг. Ориентацию пары можно характеризовать направлением отрезка прямой, соединяющей центры галактик. В исследованной области обнаружено 20 пар (цепочки из трех компонент расматривались как три пары). Позиционные углы р для них имеют сле-

дующие значения:  $-19^\circ$ ,  $+30^\circ$ ,  $+47^\circ-7^\circ$ ,  $+28^\circ$ ,  $-5^\circ$ ,  $-26^\circ$ ,  $-14^\circ$ ,  $+21^\circ$ ,  $-23^\circ$ ,  $+42^\circ$ ,  $+60^\circ$ ,  $-55^\circ$ ,  $-55^\circ$ ,  $-55^\circ$ ,  $+22^\circ$ ,  $-42^\circ$ ,  $-4^\circ$ ,  $-60^\circ$ ,  $+40^\circ$ . Не замечено ни одной физической пары с  $p=60^\circ-90^\circ$ . Вероятность того, что при случайном расположении ни у одной пары нет  $p>60^\circ$ , составляет ничтожную величину:  $3\cdot 10^{-4}$ . Средний позиционный угол пар равен  $-3^\circ$ ,7. Система скоплений тоже вытянута в направлении север-юг ( $p=-10^\circ$ ). Общая морфологическая характеристика еще ряз подтверждает физическую связь скоплений Геркулес I-V.

Наличие общей "атмосферы" и "хвостов" у галактик в парах и цепочках указывает на молодость этих объектов. Интересно, что, как правило, галактики в парах располагаются друг относительно друга не произвольным образом, а так, как изображено на фиг. 4. Из 20 пар 8 образуют орнентацию типа а), 3-типа б), в 5 парах одна из галактик сферическая, а другая направлена как в а) или б) и только в четырех



Фиг. 4. Расположение галактик в физических парах: а) продольная ориентация, б) поперечная ориентация.

парах расположение произвольное. Хорошим примером может служить система JC 1181. Приливным действием такую ориентацию объяснить невозможно. Проще всего предположить, что галактики пары

возникли (разделились) недавно и не успели совершить нескольких оборотов вокруг своих осей.

Скопления I—V состоят из различного населения. Как следует из табл. 2, в Геркулесе I преобладают спирали, а в системах II—V—
Е и SO галактики. Процент пекулярных галактик в каждом скоплении превышает среднее значение для фона в несколько раз.

Таблица 2

| Морфологическая характе-                                      | Скопдение |     |     |     |     |     |  |
|---------------------------------------------------------------|-----------|-----|-----|-----|-----|-----|--|
| ристика                                                       | 1         | 11  | Ш   | IV  | V   | Фон |  |
| Процент спиралей и неправиль-<br>ных ярче 18 <sup>m</sup> 1.  | 30        | 9   | 8   | 6   | 17  | 22  |  |
| Процент спиралей и неправиль-<br>ных ярче 16, <sup>т</sup> 6. | 53        | 25  | 11- | 10  | 28  | 25  |  |
| Процент пекулярных ярче 18,11.                                | 11        | 9   | 6   | 6   | 2   | 2   |  |
| Процент пекулярных ярче 16, <sup>т</sup> 6.                   | 24        | 14  | 11  | 10  | 7   | 3   |  |
| Интегральная светимость в $10^{12}L_{\bigodot}$ .             | 1,8       | 1,2 | 0,7 | 0,4 | 0,4 |     |  |

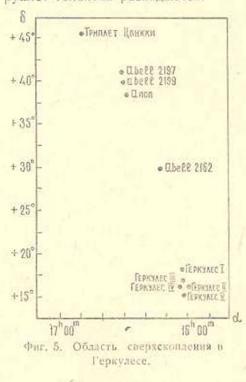
По Эйбеллу следует, что сверхсистема в Геркулесе простирается примерно на 27°. Скопления образуют в первом приближении одномерную структуру, похожую на цепочку. Лучевые скорости монотонно возрастают от северного конца к южному. Перепад скоростей со-

ставляет  $3500 \frac{\kappa M}{ce\kappa}$ . По закону Хаббла этому соответствует протя-

женность системы вдоль луча зрения на 47 мпс. Рассмотрение Паломарских карт показывает, что цепочка скоплений прослеживается дальше, чем у Эйбелла. Отсутствие данных о лучевых скоростях делает этот вывод всего лишь предположением. Однако, очень веромятно, что тройная система Цвикки (фиг. 5) с координатами α=16°48°2,

 $t = +45^{\circ}33'$  и  $V = 9608 \frac{\kappa M}{ce\kappa}$  является членом сверхсистемы (триплет

Цвики тоже вытянут в направлении север-юг).


На северном конце цепочки расположено скопление Abell 2199. Для 22 галактик этого скопления Минковский измерил лучевые скорости. Средняя лучевая скорость равна 9048  $\frac{\kappa_M}{ce\kappa}$  с дисперсией

 $842 \, \frac{\kappa_M}{ce\kappa}$  . Анализ скопления на Паломарской карте показывает, что

в нем содержится 16 галактик ярче  $15^{\circ}$ 1, 47 галактик ярче  $16^{\circ}$ 6 и 180 галактик ярче  $18^{\circ}$ 1. Интегральная светимость скопления составляет  $2.0 \cdot 10^{18} L_{\odot}$ . Подсчеты галактик в кольцевых зонах дают для массы величину  $1,25 \cdot 10^{15} M_{\odot}$ . Расчет по методу Амбарцумяна приводит к в Известия АН, серия фил. мат. наук. № 4

значению 1,77 ·  $10^{15}M_{\odot}$ . Для среднего из двух оценок имеем 1,51 ·  $10^{18}M_{\odot}$ . Тогда отношение массы к светимости равно 755  $\frac{M_{\odot}}{L_{\odot}}$  ·

В центре скопления находится радиогалактика NGC 6166, состоящая из четырех компонент. Для трех из них по данным Минковского дисперсия скоростей равняется  $880 \frac{\kappa_M}{ce\kappa}$ . Светимость системы  $1.3 \cdot 10^{11} L_{\odot}$ . Применяя теорему вириала, получаем  $\frac{M}{L} = 168$ . Высокие значения  $\frac{M}{L}$  указывают на то, что и скопление, и центральный квальруплет галактик распадаются.



Примечателен следующий факт. Лучевая скорость радиоталактики отличается от средней для скопления всего на 34  $\frac{\kappa_M}{ce\kappa}$ .

В аналогичном случае для радиогалактики в скоплении Персех разность скоростей —  $8\frac{\kappa M}{ce\kappa}$ . Цен-

тральное положение, аномальная яркость по сравнению с другия членами скопления и отсутстви (в пределах ошибок измерений пекулярной скорости у радиогаляютик являются аргументами и пользу взглядов Амбарцумяна ы космогенетическую активность этих объектов.

Является ли система скоплений в Геркулесе устойчивым обрязованием? В картинной плоскости система простирается вы

80 мпс. Общая светимость скоплений, нанесенных на фиг. 5, разви 7,5·10<sup>12</sup>L<sub>☉</sub>. Повидимому, еще столько же приходится на группы в небольшие скопления, не учтенные нами. Полной светимости системы можно приписать значение 1,5·10<sup>13</sup>L<sub>☉</sub>. Применение теоремы вириам к системе скоплений в целом дает огромную массу: 1,9·10<sup>16</sup>M<sub>☉</sub>. Такия образом, отношение массы к светимости получается равным 1270. Это заставляет ответить на поставленный вопрос отрицательно.

Как уже отмечалось, у скоплений I—V различный состав населения. Подскопления в неправильном скоплении Девы тоже имеют такую особенность [6]. Скопления I—V можно называть и подскоплениями, так как они значительно проникают друг в друга. Видим

между этими двумя категориями не существует отчетливой границы. Наличие подскоплений в Деве, в Волосах Вероники [7], тенденши скоплений к скучиванию [1] и положительный знак энергии в сверхсистеме Геркулеса подсказывают следующую мысль: в результате удаления подскоплений друг от друга и возрастания их населенности за счет процессов деления ядер галактик, постепенно возникает сверхскопление (то есть тесная система скоплений), после чего, разделющись, отдельные скопления выходят на зависимость Хаббла в лет.

Автор благодарен академику Амбарцумяну за постоянное внимяние к работе и обсуждение полученных результатов.

Бораканская астрофизическая обсерватория АН Армянской ССР

Поступила 17 XII 1963

#### ի. Դ. կաբայենցև

## ՀԵՐՔՈՒԼԵՍՈՒՄ ԳԱԼԱԿՏԻԿԱՆԵՐԻ ԿՈՒՏԱԿՈՒՄՆԵՐԻ ՄԻ ՔԱՆԻ ՄՈՐՖՈԼՈԳԻԱԿԱՆ ԲՆՈՒԹԱԳՐԵՐ

#### UUDAAAAAU

Պալոմարի ատլասի քարտեզների վրա Հերքուլեսի դերաստղակույտի տիթույթում որոշվել են մինչև 18.1 դալակտիկաների անկյունային տրամագժերը Հղասերը։

հրկու աստղակույտի համար, որոնց դալակտիկաների արտգությունների դիսպերսիաները հայտնի են, հաշվված են դանդվածները և լուսատվություննեյր։ Ամրողջ դերաստղակույտի համար կիրառված է Վերիալի Թեորեման։

Հանդված լուսատվունյան հարաբերունյան բարձր արժեքները նշան են առանձին կույտնրի, և ամբողջ դերաստղակույտի անկայունունյան։ Բերված և այդ սիստեմների անկայունունյունը հաստատող այլ փաստարկներ։ նկատված է ուղղվածունյուն և՛ դալակտիկաների ֆիզիկական զույգերի կողմնորոշ-ժահ մեջ և՛ ղույգերի նհրսում դալակտիկաների տեղավորման մեջ։

#### ЛИТЕРАТУРА

- 1. Abell G. Q. Evidence regarding second-order clustering of galaxies and interactions between clusters of galaxies. A. J., 66, № 10, 1961, 607.
- Burbidge G. and Burbidge Marg E. The Hercules cluster of nebulae. Ap. J., 130, No 2, 1959, 629.
- Zwicky F. Morphological Astronomy, Berlin, Springer, 1957.
- Амбардумян В. А. О гравитационной потенциальной энергии открытых скоплений. ДАН СССР, 24, 1939, 875.
- 5 Minkowski R. NGC 6166 and the cluster Abell 2199. A. J., 66, No. 10, 1961, 558.
- Vausouleurs G. Structure of the Virgo cluster of galaxies. Ap. J., Suppl. series, 6, 38 59, 1961, 213.
- Т. Караченцев И. О нестабильности сферического скопления голактик в Coma. Известия АН АрмССР, серия физ.-мат. наук, 17, № 3, 1964.