20340400 004 948044604644 ОБЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЯ ССР

эрараш-дшрыдши, арипперацийн XVII. № 4, 1964 Физико-магематические наука

теория упругости

Г. Я. Попов

К решению контактных (смешанных) задач теории упругости для бесконечно длинного кругового цилиндра

В работе Б. И. Когана [1] рассмотрена осесимметричная задача о напряженном состоянии бесконечного кругового цилиндра, зажатого в жесткую полубесконечную обойму, радиус внутренней полости корой на величину в (натяг) меньше радиуса R зажатого цилиндра.

В совместной работе Б. И. Когана и А. Ф. Хрусталева [2] дано обобщение предыдущей задачи на случай, когда на бесконечный вал напрессована с натягом в полубесконечная тонкая оболочка толщиной т. Использованный авторами метод, аналогичный примененному в упомянутой работе Б. И. Когана, позволил решить задачу в предположении, что нагрузка приложена только к торцу оболочки, а пригрузка, то есть нагрузка, распределенная по части поверхности цилиндра, не занятой оболочкой, отсутствует.

В работе автора [3], которая была доложена (но не опубликована) на I Всесоюзном съезде по механике раньше, чем появилась работа Б. И. Когана и А. Ф. Хрусталева, тоже была решена аналогичная контактная залача.

В настоящей работе мы излагаем метод работы [3] применительно к вышеупоминавшимся задачам. Побудило нас это сделать то обстоятельство, что этот метод имеет некоторые преимущества перед методом, использованным Б. И. Коганом и А. Ф. Хрусталевым. В частности, он нозволяет получить решение задачи о напрессовке полубесконечной оболочки, когда есть пригрузка и нагрузка приложена к оболочке в произвольном месте.

§ 1. Решим сначала задачу, рассмотренную Б. И. Коганом [1].

Ввиду того, что построение решений для первой и второй основных задач теории упругости для бесконечного цилиндра является в настоящее время довольно тривиальным делом (легко проводится средствами операционного исчисления), проблема выяснения напряженного состояния цилиндра с напрессованной оболочкой (бесконечной или конечной жесткости) заключается по сути в отыскании контактного напряжения p(x). Следовательно, задачу Б. И. Когана [1] можно сформулировать в виде интегрального уравнения

$$\int_{\delta}^{\infty} v_0^*(x - x') \, p(x') \, dx' = \delta, \quad x \geqslant 0, \tag{1.1}$$

тде $v_0^*(x)$ — функция, описывающая радиальные перемещения поверхностных точек цилиндра при действии на последний сосредоточенной кольцевой нагрузки единичной интенсивности.

Функция $v_0^*(x)$ построена в работе [4] и определяется формулами

$$v_0^*(x) = \theta_1 v_0(x/R), \quad v_0(y) = \frac{1}{\pi} \int_0^\infty \frac{\varphi_0(t)}{t} \cos t y dt,$$
 (1.2)

гле

$$\theta_{1} = \frac{2(1-\mu_{1})^{2}}{E_{1}}, \quad \varphi_{0}(t) = \frac{t}{\left(\frac{I_{0}^{2}(t)}{I_{1}^{2}(t)}-1\right)t^{2}-2(1-\mu_{1})}, \quad (1.3)$$

 μ_1 , E_1 , R — соответственно коэффициент Пуассона, модуль упругости радиус цилиндра, $I_n(z)$ — функция Бесселя мнимого аргумента.

Если учесть асимптотическое представление на бесконечности функций Бесселя, то можно обраружить, что

$$\varphi_0(t) = 1 + o(1), \quad t \to \infty.$$
 (1.4)

Приняв во внимание (1.2) и сделав замену

$$x, x' = (s, s') R, Rp(Rs) = p^*(s),$$
 (1.5)

вместо (1.1) будем иметь

$$\int_{b}^{\pi} v_{\mathfrak{g}}(s - s') \, p^{*}(s') \, ds' = \frac{\delta}{\theta_{1}}, \qquad s > 0. \tag{1.6}$$

Согласно приему решения интегральных уравнений типа Винера--Хопфа 1-го рода, примененному нами впервые в работе [5] (см. также [6]), решение интегрального уравнения

$$\int_{0}^{\infty} v_{0}(s-s') \, \varphi_{\zeta}(s') \, ds' = e^{i\zeta s}, \quad s \gg 0, \quad \text{Im } \zeta > 0$$
 (1.7)

будет иметь вид

$$\varphi_{\zeta}(s) = \frac{i}{2\pi} \int_{\gamma}^{\Psi} \frac{\Psi(w) \Psi(\zeta)}{w + \zeta} e^{-iws} dw, \qquad (1.8)$$

где т — контур интегрирования, представляющий собой вещественную ось, либо бесконечную прямую, параллельную последней и лежащую в верхней полуплоскости, а функция $\Psi(w)$ должна быть регулярной и отличной от нуля в верхней полуплоскости, удовлетворять соотношению

$$L^{-1}(u) = \Psi(u) \Psi(-u), \quad -\infty < u < \infty \tag{1.9}$$

и иметь следующее поведение на бесконечности

$$\Psi(w) = O(w^{\mu}), \quad \mu < 1, \quad \text{Im } w > 0.$$

Отметим, что представление непрерывной функции, заданной на всей вещественной оси в виде произведения (1.9), называют ее факторизацией [6].

Функцию Ψ (w) можно построить следующим образом. Учитывая представление функции $v_o(y)$ в виде (1.2), нетрудно найти преобразование Фурье ядра уравнения (1.6)

$$L(u) = \int_{-\infty}^{\infty} v_0(y) e^{iuy} dy = \frac{\varphi_0(u)}{u}.$$
 (1.10)

Чтобы теперь произвести факторизацию левой части (1.9) с учетом (1.3), представим обратную величину L(u) в следующем виде:

$$L^{-1}(u) = \sqrt{1+u^2} \left[\frac{u}{\sqrt{1+u^2} \, \varphi_0(u)} \right].$$
 (1.11)

Множитель, стоящий перед квадратными скобками факторизуется, элементарно, а выражение, стоящее в квадратных скобках, в силу (1.4) удовлетворяет всем условиям, необходимым для факторизации его по формуле (2.10) работы [6]. Таким образом, будем иметь

$$\Psi(w) = \sqrt{1 - iw} X(w), \tag{1.12}$$

$$X(w) = \exp\left[\frac{1}{2\pi i} \int_{-\infty}^{\infty} \ln \frac{u (1+u^2)^{-\frac{1}{2}}}{\varphi_0(u)} \frac{du}{u-w}\right]. \tag{1.13}$$

Сравнивая (1.6) c (1.7) и учитывая формулу перехода (1.5), нетрудно обнаружить, что

$$p(x) = \frac{\delta}{\theta_{s}R} \left[\varphi_{\zeta}(s) \right]_{\zeta=0}, \qquad s = \frac{x}{R}. \tag{1.14}$$

Найдем значение функции $\Psi(\zeta)$ при $\zeta = 0$. С этой целью устремим $a \to 0$ в соотношении (1.9). Приняв, далее, во внимание (1.10), обнаружим

$$\lim_{u \to 0} \frac{u}{\varphi_0(u)} = \Psi^2(0), \tag{1.15}$$

Заметив, что

$$\lim_{t \to 0} \frac{J_0^2(t) t^2}{J_1^2(t)} = 4, \tag{1.16}$$

и вспомнив (1.3), из (1.15) найдем

$$\Psi(0) = \sqrt{2(1+\mu_1)}. \tag{1.17}$$

Использование (1.17) и (1.8) позволяет формулу для контактного напряжения (1.14) преобразовать к следующему виду:

$$p(x) = \frac{\delta}{R} \frac{i\sqrt{2(1+\rho_1)}}{2\theta_1 \pi} \int \frac{\Psi(w)}{w} e^{-iwx} dw, \qquad s = \frac{x}{R}. \tag{1.18}$$

Найдем теперь радиальные смещения u(x) поверхностных точек цилиндра вне зоны контакта, то есть при x < 0. Нетрудно видеть, что

$$u(x) = \theta_1 \int_{-\infty}^{\infty} v_0 \left(\frac{x - x'}{R}\right) p(x') dx', \quad x < 0.$$
 (4.19)

Здесь принято во внимание, что $p(x) \equiv 0$ при x < 0. Выполнив под знаком интеграла в (1.19) замену (1.5), подставим туда выражение для контактного напряжения, даваемое формулой (1.18). В результате перестановки интегралов и последующей замены во внутреннем интеграле s - s' = y вместо (1.19) будем иметь

$$u\left(x\right) = \frac{2\sqrt{2\left(1+\mu_{x}\right)}}{2\pi} i \int_{-\infty}^{\infty} \frac{\Psi\left(w\right)L\left(w\right)}{w} e^{-iws} dw. \tag{1.20}$$

Отсюда, приняв во внимание (1.9), получим окончательно

$$u(x) = \frac{i\sqrt{2(1+u_1)}}{2\pi} i \int \frac{e^{-iws}dw}{w\Psi(-w)}. \tag{1.21}$$

Сравним теперь полученные формулы (1.18) и (1.21) с соответствующими формулами В. И. Когана [1]. Как видно, структура формул совпадает. Только в наших формулах вместо мероморфной функции $\Pi(\eta)$, которая представлена у В. И. Когана в виде бесконечного произведения, фигурирует функция $\Psi(w)$, представленная в замкнутов виде (1.12).

Чтобы убедиться в тождественности наших формул с формулами Б. И. Когана, нужно установить связь между П (т) и Ψ (w). На основании формулы (34) цитируемой работы с учетом наших обозначений (1.3) можем записать

$$\frac{u}{\varphi_{0}(u)} = \sqrt{2(1 + \mu_{1})} \Pi(iu) \sqrt{2(1 + \mu_{1})} \Pi(-iu), \quad (1.22)$$

При получении (1.22) была сделана замена $\eta = iu$ и принято во винмание

$$J_0(iu) = I_0(u), \quad J_1(iu) = iI, (u).$$

С другой стороны, если учесть (1.10) и (1.9), имеем

$$\frac{u}{\varphi_0(u)} = \Psi(u) \Psi(-u). \tag{1.23}$$

Таким образом, функции $\Psi(u)$ и $\sqrt{2(1+g_1)}$ $\Pi(iu)$ выполняют факторизацию одной и той же функции.

Однако, из этого еще не вытекает их тождественность. Необходимо еще доказать совпадение их асимптотики на бесконечности [6]. В данном случае такое совпадение нетрудно установить. В самом деле, на основании соотношения (33) цитируемой работы имеет место следующее:

$$\Pi(\eta) = \sqrt{\frac{-\eta}{2(1+\mu_1)}}[1+o(1)], \quad \eta \to \infty.$$
 (1.24)

С другой стороны, на основании (1.12) и X(w) = 1 + o(1), $w \to \infty$ ([6], стр. 18) следует, что

$$\Psi(w) = \sqrt{-iw} [1 + o(1)]. \tag{1.25}$$

Сравнивая (1.24) и (1.25), делаем вывод, что

$$\Psi(w) = \sqrt{2(1 + \mu_1)} \Pi(iw).$$
 (1.26)

Установив зависимость (1.26) и приняв во внимание различие в правилах знаков для контактного напряжения, убеждаемся в тождественности формул (1.18) и (1.21) с соответствующими формулами В. И. Когана [1].

Отправляясь от своих формул, Б. И. Коган установил асимптотические представления компонентов тензора напряжений и составляющих вектора перемещений в нуле и на бесконечности.

Покажем на примере контактного напряжения, как получить аналогичные представления, исходя из полученной нами формулы (1.18).

Запишем последнюю в таком виде

$$p(x) = \frac{\delta \sqrt{2(1+\mu_1)}}{2\pi\theta_1 R} i \left[\int_{\tau} \frac{\Psi(w) - \Psi(0)}{w} e^{-iws} dw + \int_{\tau} \frac{\Psi(0)}{w} e^{-iws} dw \right].$$
(1.27)

Можно убедиться, усилив сходимость первого интеграла в последней формуле приемами контурного интегрирования, что первое слагаемое, стоящее в квадратных скобках, стремится к нулю при $s \to \infty$ (или $x \to \infty$). Второй же интеграл согласно теории вычетов равен — $2\pi i \Psi(0)$,

Таким образом, если учесть (1.17) и (1.3), то из (1.27) найдем

$$p\left(\infty\right) = \frac{\delta E_1}{R\left(1 - p_1\right)}. (1.28)$$

Эта формула полностью совпадает с формулой Б. И. Когана.

Для получения асимптотического представления в окрестности вуля сделаем в интеграле формулы (1.18) замену $w \cdot s = z$;

$$p(x) = \frac{\delta \sqrt{2(1+\mu_1)}}{R\theta_1} \frac{l}{2\pi} \int_{\gamma} \frac{\Psi(z/s)}{z} e^{-lz} dz.$$

После чего, приняв во внимание асимптотику (1.25), устремим $s \to 0$. В результате обнаружим, что

$$p(x) = \frac{\delta \sqrt{2(1+\mu_1)}}{2R(1-\mu_1^2)} \frac{1}{\sqrt{s}} [1+o(1)] \int_{z}^{z} \frac{e^{-iz}}{\sqrt{-iz}} dz, \quad (1.29)$$

Вычислив последний интеграл обычными приемами контурного интегрирования, найдем

$$p(x) = \frac{\delta \sqrt{2(1+\mu_1)}}{2R(1-\mu_1^2)\sqrt{\pi s}} [1+o(1)], \quad s \to 0 \quad \left(s = \frac{x}{R}\right). \tag{1.30}$$

Формула (1.30) также совпадает с соответствующей формулой Б. И. Когана, если в последней исправить опечатку.

§ 2. Перейдем теперь к рассмотрению следующей задачи. Пусть на бесконечный вал радиуса R напрессована с натягом δ полубесконечная оболочка толщиной t. На оболочку действует радиальная нагрузка $q_+(x)$ ($q_+(x) \equiv 0$, x < 0), а к свободной от оболочки части вала приложена радиальная пригрузка $q_-(x)$ ($q_-(x) \equiv 0$, x > 0). Требуется найти контактное напряжение p(x) и прогибы оболочки w(x).

Обозначим радиальные смещения поверхностных точек вала через u(x). Эти смещения, очевидно, можно вычислить по формуле

$$u(x) = \theta_1 \int_{-\infty}^{\infty} v_0 \left(\frac{x - x'}{R} \right) [q_-(x') + p(x')] dx', \quad -\infty < x < \infty. \quad (2.1)$$

Прогибы оболочки ([7], стр. 371) должны удовлетворять уравнению

$$D\frac{d^{4}w}{dx^{4}} + \frac{Et}{R^{2}}w = q_{+}(x) - p(x), \quad 0 \le x < \infty, \tag{2.2}$$

где D - жесткость оболочки.

Кроме того, поскольку имеет место напрессовка с натягом 3, должно выполняться соотношение

$$u(x) - w(x) = \delta. \tag{2.3}$$

Наконец, должны быть выполнены условия на торце оболочки

$$w^{(n)}(+0) = 0, \quad n = 2, 3.$$
 (2.4)

Условия (2.4) выражают отсутствие на торце оболочки изгибающих моментов и поперечных сил.

Прежде чем приступить к решению системы уравнений (2.1-2.4) сделяем замену переменных x, x' = (s, s')R и перейдем к приведенным величинам

$$p^*(s) = R\rho(sR), \ q_{\pm}^*(s) = Rq_{\pm}(sR), \ u_*(s) = u(sR), \ w_*(s) = w(sR).(2.5)$$

Тогда упомянутую систему можем записать в таком виде:

$$u_*(s) = \theta_1 \int_{-\infty}^{\infty} v_0(s - s') \left[q_-^*(s') + p^*(s') \right] ds', \quad -\infty < s < \infty$$
 (2.6)

$$w_{\star}^{(4)}(s) + 43^4 w_{\star}(s) = \frac{R^3}{D} [q_{+}^{\star}(s) - p_{-}^{\star}(s)], \quad s > 0$$
 (2.7)

$$u_*(s) - w_*(s) = \delta, \quad s \ge 0$$
 (2.8)

$$w_{\star}^{(n)}(+0) = 0, \quad n = 2, 3.$$
 (2.9)

Здесь следует считать, что

$$\beta^4 = \frac{EtR^2}{4D} \qquad (2.10)$$

$$p^*(s) \equiv 0$$
, $s < 0$; $q_+^*(s) \equiv 0$, $s < 0$, $q_-^*(s) \equiv 0$, $s > 0$. (2.11)

В дальнейшем будет использовано то упрощающее формулы предположение, что заданные функции $q_{\pm}^*(s)$ равны нулю на бесконечности и имеют смысл интегралы

$$Q^{\pm}(u) = \int_{-\infty}^{\infty} q_{\pm}^{\star}(s) e^{isu} ds. \qquad (2.12)$$

Займемся отысканием частного решения уравнения (2.7), записав его предварительно так:

$$y^{(4)}(s) + 4\beta^4 y(s) = f(s), \quad s \ge 0.$$
 (2.13)

Можно проверить, что

$$y(s) = \int_{0}^{\infty} G(s - s') f(s') ds', \qquad (2.14)$$

причем

$$G(y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{\pm luy}}{u^4 + 4\beta^4} du$$
 (2.15)

или

$$G(y) = \sum_{j=1}^{2} \operatorname{Res}_{w = \zeta_{j}} \frac{e^{iw + y + 1}}{w^{4} + 4\beta^{4}} = -\frac{1}{8\beta^{2}} \left[\frac{e^{i\zeta_{1}(y)}}{\zeta_{1}} + \frac{e^{-i\zeta_{1}(y)}}{\zeta_{1}} \right] \cdot \operatorname{Im} \zeta_{j} > 0, \quad (2.16)$$

где

$$\zeta_1 = (-1+i)\beta$$

является одним из корней характеристического уравнения для (2.13). Найдем $y(\infty)$. Для этого в (2.14) сделаем замену $s-s'=\tau$. Приняв затем во внимание четность функции G(y), будем иметь

$$y(s) = \int_{-s}^{\infty} f(s+\tau) G(\tau) d\tau, \qquad (2.17)$$

откуда, устремляя $s \to \infty$, обнаружим

$$y(\infty) = f(\infty) \int_{-\infty}^{\infty} G(\tau) d\tau = \frac{f(\infty)}{4\beta^4}.$$
 (2.18)

Общим ограниченным на бесконечности решением уравнения (2.7) будет функция

$$w_*(s) = \theta_1 \left(A_1 e^{\zeta_1 s} + A_2 e^{\overline{\zeta}_1 s} \right) + \frac{R^3}{D} \int_0^\infty G(s - s') \left[q_+^*(s') - p_-^*(s') \right] ds', \quad (2.19)$$

где A_1 и A_2 — произвольные постоянные.

Если контактное напряжение является конечным и отличным от нуля на бесконечности, то в силу (2.18) будет таковой и функция (2.19).

Очевидно, подстановка (2.19) и (2.6) в (2.8) приведет к интегральному уравнению для приведенного контактного напряжения. Если пра этом учесть (2.11) и ввести обозначения

$$c_* = \frac{R^3}{D\theta_1}$$
, $A_3 = \frac{\delta}{\theta_1}$, (2.20)

то упомянутое уравнение можно привести к следующему интегральному уравнению типа Винера-Хопфа:

$$\int_{0}^{\infty} l(s-s') \, p^{*}(s') \, ds' = F(s) + A_{1} e^{\zeta_{1} s} + A_{2} e^{\zeta_{1} s} + A_{3}, \quad s \geqslant 0, \qquad (2.21)$$

где

$$l(y) = v_0(y) + c_*G(y),$$
 (2.22)

$$F(s) = c_* \int_0^\infty G(s - s') \ q_+^*(s') \ ds' + \int_{-\infty}^0 v_0(s - s') \ q_-^*(s') \ ds'. \tag{2.23}$$

Последнюю формулу, если учесть (2.11), (2.12), а также и то, что в силу (2.15), (1.10)

$$\int_{-\pi}^{\infty} G(y) e^{iyu} dy = \frac{1}{u^4 + 4\beta^4}, \qquad \int_{-\pi}^{\pi} v_0(y) e^{iyu} dy = \frac{\varphi_0(u)}{u}, \qquad (2.24)$$

на основании теоремы о свертках можно записать и в таком виде

$$F(s) = \frac{1}{2\pi} \int_{-\zeta}^{\infty} \left[\frac{c^* Q^+(-\zeta)}{\zeta^4 + 4\beta^4} - \frac{\varphi_0(\zeta) Q^-(-\zeta)}{\zeta} \right] e^{i\zeta s} d\zeta.$$
 (2.28)

Как и в предыдущем пункте, сначала найдем решение $\tau_c(s)$ интегрального уравнения

$$\int_{0}^{\infty} l(s-s') \varphi_{\zeta}(s) ds = e^{i\xi s}, \quad \operatorname{Im} \zeta > 0, \quad s \geqslant 0, \tag{2.26}$$

воспользовавшись формулой

$$\varphi_{\zeta}(s) = \frac{i}{2\pi} \int_{1}^{\Psi(\zeta)} \frac{\Psi(\zeta) \Psi(w)}{w + \zeta} e^{-iws} dw.$$
 (2.27)

Функцию Ψ (ω), регулярную и отличную от нуля в верхней полуплоскости (без точки ∞) и удовлетворяющую функциональному уравнению (1.9), в котором в силу (2.22) и (2.24) следует взять

$$L(u) = \frac{\varphi_0(u)}{u} + \frac{c_*}{u^4 + 43^4}, \qquad (2.28)$$

построим таким же приемом, как и в предыдущем пункте. В результате будем иметь

$$\Psi(w) = \sqrt{1 - iw X(w)},$$

$$X(w) = \exp\left(\frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{\ln H(u)}{u - w} du\right).$$
(2.29)

$$H(u) = \frac{u}{\sqrt{1+u^2}} \frac{u^4 + 4\beta^4}{\varphi_0(u) (u^4 + 4\beta^4) + c_8 u},$$

причем и здесь будет справедлива асимптотика (1.25).

Построив функцию $\varphi_{\xi}(s)$, нетрудно найти решение уравнения (2.21). Действительно, сравнив (2.21) с (2.26) и приняв во внимание (2.25), нетрудно обнаружить, что

$$p_{*}(s) = \sum_{j=1}^{3} A_{j} \left[\varphi_{c}(s) \right]_{c=z_{j}} + p_{o}(s), \qquad (2.30)$$

pne

$$p_{\delta}(s) = \frac{1}{2\pi} \int_{0}^{\infty} \left[\frac{c_{\delta} Q^{+}(-\zeta)}{\zeta^{4} + 4\beta^{4}} - \frac{\varphi_{0}(\zeta)}{\zeta} Q^{-}(-\zeta) \right] \varphi_{\zeta}(s) d\zeta, \qquad (2.31)$$

$$z_1 = -i\zeta_1, \quad z_2 = -i\bar{\zeta_1}, \quad z_3 = 0.$$
 (2.32)

Если ввести в рассмотрение интеграл типа Коши

$$I(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \left[\frac{c_z Q^+(-u)}{u^4 + 4\beta^4} - \frac{\varphi_0(u)}{u} Q^-(-u) \right] \frac{\Psi(u) du}{u - z}$$
(2.33)

и подставить (2.27) под знак интеграла в (2.31), то в результате перестановки интегралов вместо (2.31) будем иметь

$$p_0(s) = -\frac{1}{2\pi} \int \Psi(w) I(-w) e^{-iws} dw.$$
 (2.34)

Подставив (2.30) в (2.19) и приняв во внимание (2.20), (2.27) и теорему о свертках, получим формулу для приведенных прогибов оболочки и их производных

$$\frac{w_{*}^{(n)}(s)}{\theta_{4}} = \zeta_{1}^{n} A_{2} e^{\zeta_{1} s} + \bar{\zeta}_{1}^{n} A_{2} e^{\bar{\zeta}_{1} s} + c_{*} \int_{0}^{\infty} G^{(n)}(s-s') \left[q_{+}^{*}(s') - p_{0}(s')\right] ds' - c_{*} \int_{0}^{\infty} G^{(n)}(s') \left[q_{+}^{*}(s') - p_{0}(s')\right] ds' - c_{*} \int_{0}^{\infty} G^{(n)}(s') ds' + c_{*} \int_{0}^{\infty} G^{(n)}(s') \left[q_{+}^{*}(s') - p_{0}(s')\right] ds' - c_{*} \int_{0}^{\infty} G^{(n)}(s') ds' + c_{*} \int_{0}^{\infty} G^{(n)}$$

$$-c_{s}\sum_{j=1}^{3}\frac{A_{j}\Psi\left(z_{j}\right)}{2\pi}i\int_{3}^{4}\frac{\Psi\left(w\right)e^{-iws}\left(-iw\right)^{n}dw}{\left(w^{4}+4\beta^{4}\right)\left(w+z_{j}\right)},\ s>0,\ n=0,1,2,3. \tag{2.35}$$

Пользуясь формулой (2.35), можно найти значения функций $w^{(n)}(s)$ при s=+0. Для этого, очевидно, следует положить там s=0. При этом интегралы, стоящие под знаком суммы, легко вычисляются с помощью теоремы о вычетах. Приняв последнее обстоятельство во внимание, из (2.35) найдем

$$\frac{w_{*}^{(n)}(+0)}{\theta_{1}} = A_{1}a_{1}^{(n)} + A_{2}a_{2}^{(n)} + b^{(n)}, \quad n = 0, 1, 2, 3, \tag{2.36}$$

где

$$\begin{split} 16\beta^{2}a_{1}^{(n)} &= \zeta_{1}^{n} + c_{*} \frac{\Psi\left(-\bar{\zeta}\right)\Psi\left(\zeta_{1}\right)\left(-i\zeta_{1}\right)^{n-1}}{i\beta} - ic_{*}\Psi^{2}\left(-\bar{\zeta}_{1}\right)\left(i\bar{\zeta}_{1}\right)^{n-2}, \\ 16\beta^{2}a_{2}^{(n)} &= \bar{\zeta}_{1}^{n} - ic_{*}\Psi^{2}\left(\zeta_{1}\right)\left(-i\zeta_{1}\right)^{n-2} + \frac{c_{*}}{\ell_{r}^{2}}\Psi\left(\zeta_{1}\right)\Psi\left(-\zeta_{1}\right)\left(i\bar{\zeta}_{1}\right)^{n-1}, \\ b^{(n)} &= \frac{c_{*}\delta\Psi\left(0\right)}{8\theta_{1}\beta^{2}}\left[-i\Psi\left(\zeta_{1}\right)\left(-i\zeta_{1}\right)^{n-2} - i\Psi\left(-\bar{\zeta}_{1}\right)\left(i\bar{\zeta}_{1}\right)^{n-2}\right] + \\ &+ c_{*}\int_{0}^{\infty}G^{(n)}\left(s'\right)\left[g_{+}^{*}\left(s'\right) - p_{0}\left(s'\right)\right]ds'. \end{split}$$

Заметим, что фигурирующее здесь нулевое значение функции $\Psi(w)$ можно легко вычислить. Для этого следует в соотношении (1.9) сделать предельный переход $u \to 0$. В результате будем иметь

$$\Psi^{2}(0) = L^{-1}(0).$$
 (2.37)

Обратную величину нулевого значения функции L (u) вычислим, воспользовавшись формулами (2.28), (1.15) и (1.17). Если при этом еще учесть (2.10) и (2.20), то взамен (2.37) получим

$$\Psi^{2}(0) = \frac{2(1 + \mu_{1})\theta_{1}Et}{\theta_{1}Et + 2R(1 + \mu_{1})}.$$
(2.38)

Подставив нулевые значения производных от $w_*(s)$, даваемые формулой (2.36), в условия (2.9) свободного торца оболочки, получим два алгебраических уравнения, из которых найдем произвольные постоянные A_1 и A_2 . Тем самым будет исчерпан вопрос о построения точного решения рассматриваемой задачи.

Пользуясь полученными выше формулами (2.80) и (2.19), выясним чему равны на бесконечности контактное напряжение и прогибы оболочки.

Из самого способа построения формулы (2.30) следует, что каждый ее член соответствует решению интегрального уравнения (2.21) при определенной правой части. При этом только третий член суммы, фигурирующий в (2.30), соответствует решению интегрального ураввения (2.21) с правой частью, неинтегрируемой в промежутке (0, ∞), в, стало быть, только указанный член может дать отличный от нуля предел на бесконечности. На основании сказанного можем зеписать

$$p^*\left(\infty\right) = \frac{\delta \Psi\left(0\right)}{\theta_1} \lim_{s \to \infty} \frac{i}{2\pi} \int_{\gamma}^{\Psi} \frac{\Psi\left(w\right)}{w} e^{-iws} dw.$$

Предел аналогичного интеграла нами найден при получении формулы (1.28). Используя полученный там результат, найдем

$$p^*(\infty) = \frac{\delta}{\theta_1} \Psi^2(0)$$

или, если учесть (2.38) и (1.3),

$$p^{*}(\infty) = \frac{EE_{1}\delta t}{E_{1}R + (1 - \mu_{1}) Et}$$
 (2.39)

Устремим $s \to \infty$ в формуле (2.19) и, учитывая (2.14), (2.18), обнаружим, что

$$w_*(\infty) = \frac{R^3}{4D\beta^4}p^*(\infty).$$

Откула, если учесть (2.39) и (2.10), найдем

$$w_*(\infty) = -\frac{R^2 E \delta}{E_1 R + (1 - \mu_1) E t}$$
 (2.40)

Формулы (2.39) и (2.40) полностью совпадают с соответствующими формулами Б. И. Когана и А. Ф. Хрусталева [2], что является естественным, ибо учтенная в наших формулах нагрузка и пригрузка ве должны сказываться на напряжениях и смещениях в бесконечно удаленной точке.

Подводя итоги изложенному выше, можно сделать вывод, что предложенный нами способ решения контактных задач для бесконечного цилиндра при наличии полубесконечной области коатакта в отличие от метода, примененного в работах Б. И. Когана и А. Ф. Хрусталева [1], [2], позволяет, во-первых, без всяких принципиальных затруднений учитывать пригрузку и нагрузку, приложенную к оболочке в любом месте, во-вторых, получить решение в замкнутом виде. Иными словами, роль мероморфной функции, представленной указанными авторами в виде бесконечного произведения, требующего для своего построения отыскания корней сложных трансцендентных уравнений, у нас выполняет функция, представленная в виде интеграла типа Коши по бесконечной прямой.

Заметим, что изложенным методом можно решить и другие смешанные задачи для бесконечного цилиндра, рассмотренные указанными авторами (см., например, [8]).

Изложенный метод легко распространить также и на задачи, где не имеет место осевая симметрия. Отметим еще, что для рассмотренных задач можно получить до статочно простые приближенные решения. Для этого следует восполь зоваться методом, примененным нами в работе [9] и основанном в приближенном решении проблемы факторизации.

Одесский инженерно-строительный институт

Поступила 18 IX 19

9. Bu. Anund

ԱՆՎԵՐՋ ԵՐԿԱՐ ՇՐՋԱՆԱՅԻՆ ԳԼԱՆԻ ՀԱՄԱՐ ԱՌԱՁԳԱԿԱՆՈՒԹՅԱՆ ՏԵՍՈՒԹՅԱՆ ԿՈՆՏԱԿՏԱՅԻՆ (ԽԱՌԸ) ԽՆԴԻՐՆԵՐԻ ԼՈՒԾՄԱՆ ՇՈՒՐՋԸ

UUTONONHU

հիստանվերջ հանաա գտվարությեսի հաշխովաց նետնունեն վետ դարի իր նվաց գտվարները փազավոհ արժուղ կինտովոց հրուրվացքն բ միրրի-թումի է ա ուրությերություն իրորակարություն հրատվաց հրուրվացքն բ մետրի իր ուրությունը իրորակարություն հրատություն հրատունին է արիր ջանկի է ա հրատորվերջ հանաակեր արդարություն հրատունին արդերծ հրարվացներ հրատորվեր է հրատուկ կարություն հրատունին արդերծ հրարկացներ հրատուրակիչ հրատուկ կարություն հրատունին արդերծ հրարկացներ

ЛИТЕРАТУРА

- Коган Б. И. Напряженное состояние бесконечного цилиндра, зажатого в абсолю жесткую полубесконечную цилиндрическую обойму. П.М.М., 20, в. 2, 1956.
- Коган Б. И., Хрусталев А. Ф. Напряжения при мапрессовке полубесконеч оболочки на цилиндр. Известия АН СССР, ОТН, Механика и машиностроен № 5, 1960.
- Попов Г. Я. Применение некоторых новых методов теории интегральных урав ний к контактным задачам теории упругости. 1 Всесоюзный съезд по теорег прикл. механ., Тезисы докладов, М., 1960.
- Воронин Т. А. Контактные напряжения, возникающие при тугой посадке жестя втулки на бесконечный цилиндр. Известия АН СССР, ОТН, № 8, 1957.
- Попов Г. Я. Вдавливание полубесконечного штампа в упругое полупространст Теорет, и прикл. математика, вып. 1, 1958, Львов.
- Крейн М. Г. Интегральные уравнения на полупрямой с ядром, зависящим от р ности аргументов. УМН, 13, № 5, 1958.
- 7. Тимошенко С. П. Пластинки и оболочки. Гостехиздат, М.-Л., 1948.
- Коган Б. М., Хрусталев А. Ф. Об одной осесимметричной задаче теории ут гости для полого цилиндра. ПММ, 22, в. 5, 1958.
- Попов Г. Я. Об одной плоской контактной задаче теории упругости. Извес АН СССР, ОТН, Механика и машиностроение, № 3, 1961.