20340406 006 9650695066666 0409606050 560640966 ЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

Аффи-ишрыиши, филиропьбавт XVII, № 3, 1964 Физико-математические науки

ТЕОРИЯ УПРУГОСТИ

А. С. Вольмир, И. Г. Кильдибеков

Нелинейные акустические колебания цилиндрической оболочки

Задача о вынужденных колебаниях подкрепленных оболочек, вызшных пульсациями акустического давления, уже рассматривалась в апературе. Наибольший интерес представляет исследование в нешнейной постановке колебаний круговых цилиндрических панелей, экрепленных по контуру и находящихся в акустическом поле. Этому эопросу посвящены работы Кирхмана и Гринспона [1], "Лэсситера, чесса и Хаббарда [2], Лина [3] и других; см. обзорную статью Гудизна и Раттайи [4]. В работах В. В. Болотина [5], М. Ф. Диментчерга [6] и других авторов эта проблема рассматривается в статистической постановке.

В настоящем сообщении исследуются собственные и акустичекие вынужденные нелинейные колебания круговых цилиндрических шиелей, имеющих "идеальную" форму, а также с учетом начальных неправильностей в форме срединной поверхности. Используется меюд определения амплитудно-частотных характеристик, предложенный 3. И. Григолюком [7]; проведено сравнение с данными, полученшыми другим путем Г. В. Мишенковым [8].

§ 1. Рассмотрим колебания круговой цилиндрической панели, наюлящейся под воздействием сжимающих усилий *р* вдоль образующей в акустического равномерного нормального давления $q(t) = q_a \cos \omega t$. Для определения амплитуды давления q_a можно воспользоваться известной формулой $N = 20 \lg (q_e/q_0); N - уровень шума в децибелах,$ $<math>q_4$ - условный порог давления $q_0 = 2 \cdot 10^{-5} \mu/M^2, \quad q_e - эффективная ве$ мчина звукового давления. Отсюда находим

$$q_{e} = \sqrt{2} q_{e} = 2^{1.5} \cdot 10^{5(0,01N-1)} \kappa / \kappa^{2} \approx 2^{1.5} \cdot 10^{5(0,01N-2)} \kappa c / c \kappa^{2}.$$

Исходные уравнения теории гибких пологих оболочек примем, как обычно, в виде [9]

$$\frac{D}{h}\nabla^{2}\nabla^{2}\omega = L\left(w + w_{0}, \Phi\right) + \frac{1}{R}\frac{\partial^{2}\Phi}{\partial x^{2}} + \frac{q\left(x, y, t\right)}{h}, \qquad (1)$$

$$\frac{1}{E}\nabla^{2}\nabla^{2}\Phi = -\frac{1}{2}L(w+2w_{0},w) - \frac{1}{R}\frac{\partial^{2}w}{\partial x^{2}}.$$
 (2)

Здесь и и w₀ — соответственно дополнительный и начальный прогибы 5 Пакетия АН, серия физ.-мат. наук, № 3 панели, h — толщина, R — радиус кривизны срединной поверхности, Φ — функция напряжений в срединной поверхности, L — оператор, который в применении к функциям ($w + w_0$), Φ будет

$$L (w + w_0, \Phi) = \frac{\partial^2 (w + w_0)}{\partial x^2} \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 (w + w_0)}{\partial y^2} \frac{\partial^2 \Phi}{\partial x^2} - 2 \frac{\partial^2 (w + w_0)}{\partial x \partial y} \frac{\partial^2 \Phi}{\partial x \partial y};$$

координаты x и y откладываются вдоль образующей и по дуге. Нормальная нагрузка q(x, y, t) для панели, совершающей колебания, равна

$$q(x, y, t) = -\rho h \frac{\partial^2 w}{\partial t^*} - 2\rho h z \frac{\partial w}{\partial t} + q_a \cos \omega t, \qquad (3)$$

где «- коэффициент затухания.

Примем края панели шарнирно опертыми. Аппроксимируем w и wo выражениями

$$w = f(t)\sin\frac{\pi x}{a}\sin\frac{\pi y}{b}, \quad w_0 = f_0\sin\frac{\pi x}{a}\sin\frac{\pi y}{b}.$$
 (4)

Подставляя (4) в уравнение совместности деформаций (2), определяем функцию Ф. Удовлетворяя, далее, уравнению (1) по методу Бубнова-Галеркина, получаем следующее обыкновенное дифференциальное уравнение, описывающее в первом приближении нелинейные акустические колебания панели

$$\frac{d^{2\zeta}}{d\tau^{2}} + \frac{2\varepsilon}{\omega} \frac{d\zeta}{d\tau} + \frac{\omega_{0}^{2}}{\omega^{2}} \left(1 - \frac{p^{*}}{p_{u}^{*}}\right) (z\zeta - \beta\zeta^{2} + \eta\zeta^{3}) = \zeta_{0} \frac{\omega_{0}^{2}}{\omega^{2}} \frac{p^{*}}{p_{u}^{*}} + \frac{16}{\pi^{2}} \frac{V^{2}}{a^{2}\omega^{2}} q_{u}^{*} \cos\tau;$$
(5)

принято $\zeta = f(t)/h$, $\zeta_0 = f_0/h$, $z = \omega t$; введены безразмерные параметры $p^* = pa^2/Eh^2$, $p_a^* = p_a a^2/Eh^2$, $q_a^* = q_a a^2/Eh^3$. Параметр верхнего критического напряжения p_a^* равен

$$p_{\mu}^{*} = \frac{\pi^{2} \left(1 + \lambda^{2}\right)^{2}}{12 \left(1 - \mu^{2}\right)} + \frac{k^{2} \lambda^{4}}{\pi^{2} \left(1 + \lambda^{2}\right)^{2}}.$$
(6)

где $\lambda = a/b$, $k = b^2/Rh$. Величина ω_0^2 , равная квадрату основной частоты собственных колебаний панели при малых прогибах, определяется выражением

$$w_0^2 = \pi^2 p_u^* \frac{V^2 h^2}{a^4}; \tag{7}$$

здесь V — скорость распространения упругих воли в материале оболочки $V = (Eg/\gamma)^{V_2}$. Через 2 в (5) обозначено Нелинейные экустические колебания оболочки

$$a = 1 + \frac{1 - \mu^2}{\left[(1 + \lambda^2)^2 + \frac{12\lambda^4 k^2 (1 - \mu^2)}{\pi^4 (1 + \lambda^2)^2} \right] \left(1 - \frac{p^*}{p_0^*} \right)} \left\{ \frac{3}{2} (1 + \lambda^4) \zeta_0^2 - \frac{16\lambda^4 k}{\pi^4} \left[1 + \frac{8}{(1 + \lambda^2)^2} \right] \zeta_0 \right\}.$$

$$(8)$$

Под 3 и 7 понимаются величины

$$\beta = \frac{1 - \mu^2}{\left[(1 + \lambda^2)^2 + \frac{12\lambda^4 k^2 (1 - \mu^2)}{\pi^4 (1 + \lambda^2)^2} \right] \left(1 - \frac{p^8}{p_B^*} \right)} \left\{ \frac{16\lambda^4 k}{\pi^4} \left[\frac{1}{2} + \frac{8}{(1 + \lambda^2)^2} \right] - \frac{12\lambda^4 k^2 (1 - \mu^2)}{\pi^4 (1 + \lambda^2)^2} \right] - \frac{9}{4} (1 + \lambda^4) \zeta_0 \right\},$$

$$(9)$$

$$\eta = \frac{0.75 \left(1 - \mu^2\right) \left(1 + \lambda^4\right)}{\left[\left(1 + \lambda^2\right)^2 + \frac{12 \,\lambda^4 k^2 \left(1 - \mu^2\right)}{\pi^4 \left(1 + \lambda^2\right)^2}\right] \left(1 - \frac{p^*}{p_u^*}\right)}.$$
(10)

Положив в выражениях (5), (8—10) $\zeta_0 = 0$, приходим к случаю мнужденных колебаний идеальной панели. При $q_a = 0$ получим уравение, отвечающее собственным колебаниям панели. Эти случан иследовались ранее Г. В. Мишенковым [8].

§ 2. Рассмотрим сначала статическую задачу. Опуская динамиеские члены в уравнении (5), получим

$$\alpha\zeta - \beta\zeta^2 + \eta_{\gamma}^{c_3} = \frac{\zeta_0}{\frac{p_{\gamma}^{c_3}}{p^{\gamma}} - 1} + q, \tag{11}$$

te параметр нагрузки q равен

$$q = \frac{16}{\pi^2} \frac{V^2}{a^2 \omega_0^2} \left(1 - \frac{p^*}{p_u^*}\right)^{-1} q_a^*.$$
 (12)

арни соответствующего однородного уравнення отвечают возможным авновесным положениям ненагруженной идеальной панели. При $< 2V \eta$ имеется одно положение равновесия, около которого проходят колебания; при β > 2V η получим три положения равновесия. авможные положения равновесия нагруженной оболочки определятся, исходя из зависимости

$$f(\zeta) = \alpha \zeta - \beta \zeta^{*} + \eta \zeta^{*} - \frac{\zeta_{0}}{\frac{p_{B}^{*}}{p^{*}} - 1} - q.$$
(13)

На фиг. 1 представлены соответствующие кривые 1—3 для квавтных идеальных панелей при k=0 (плоская панель), k=12, = 24; во всех случаях принято q=0,3. Линия 4 отвечает случаю нели, нагруженной одновременно поперечным давлением и прочьной сжимающей силой; эта линия пересекает ось 5 в трех точках, что соответствует трем возможным равновесным положениям системы.

Влияние начальной погиби демонстрируется данными, приведенными на фиг. 2. График построен для панелей с теми же параметрами кривизны и при тех же условиях нагружения, что и на фиг. 1; на обеих фигурах приняты одинаковые обозначения.

§ 3. Перейдем к исследованию амплитудно-частотных зависимостей, используем при этом путь, предложенный Э. И. Григолюком [7]. Примем решение уравнения (5) в виде ζ = a cos τ; подставив это выражение в (5) и выполняя условие ортогональности результата подстановки к функции cos τ по четверти периода, получим

$$v^{2} + \frac{4}{\pi} \frac{\varepsilon}{\omega_{0}} \sqrt{1 - \frac{p^{*}}{p_{u}^{*}}} v - \alpha + \frac{8}{3\pi} \beta a - \frac{3}{4} \eta \alpha^{2} + \frac{4}{\pi a} \frac{\zeta_{0}}{\frac{p_{u}}{p^{*}} - 1} + \frac{q}{a} = 0,$$
(14)

где

$$v = \frac{\omega}{\omega_0 \sqrt{1 - \frac{p^*}{p_B^*}}}$$
 (15)

При ≈ = О будет

$$v^{2} = a - \frac{8}{3\pi} \beta a + \frac{3}{4} \eta a^{2} - \frac{4}{\pi a} \frac{\zeta_{0}}{\frac{p_{u}}{p^{*}} - 1} - \frac{q}{a}.$$
 (16)

При q = 0 получаем уравнение так называемой "скелетной" линии, отвечающее случаю свободных колебаний панели.

На фиг. 3, 4 представлены амплитудно-частотные характеристики по (16); по-прежнему принято q = 0,3. Проследим характер изменения амплитуды с возрастанием частоты для случая плоской панели (k=0). Вдоль участка AB амплитуда меняется монотонно. За точкой B возможны колебания различного типа. В некоторой точке C, положение

68

Нелинейные вкустические колебания оболочки

второй в каждом конкретном случае определяется особо, происходит дыв* колебаний: амплитуда падает скачком до значения, отвечаюлего точке D нижней ветви. Дальнейшее уменьшение амплитуды сопетствует ветви DF. При уменьшении частоты происходит скачкобразное изменение амплитуды в точке E. Явление "срыва" колебаша наблюдалось экспериментально Кирхманом и Гринспоном [1] при бучении реакции плоских панелей на воздействие шума при уровне тукового давления в 150 дб.

В случае панели с параметром кривизны, равным 12, эффект нелинейности возрастает. При параметре кривизны, равном 24, получем две области неустойчивости.

Рассмотрим далее случай, когда панель подвергается дополничльному действию продольных усилий, интенсивность которых соплаляет 1/2 от верхнего критического значения. При этом становятся заможными три вида колебательных движений: а) колебания около кновного устойчивого положения равновесия, б) колебания около пощелкнутого устойчивого положения, в) колебания, охватывающие оба эти положения. Колебаниям около основного положения равновсия соответствует ветвь *ста*; верхние ветви отвечают третьему типу полебаний.

Данные, представленные на фиг. 4, демонстрируют влияние нашльной погиби на амплитудно-частотные зависимости; штрих-пункпрные линии отвечают случаю идеальной панели. Как видим, начальные неправильности, направленные к центру кривизны, как бы "спрямлют" амплитудно-частотные кривые; напротив, наличие отрицательной начальной погиби приводит к усилению эффекта нелинейности.

В заключение отметим, что полученные здесь данные для идеальных панелей достаточно хорошо согласуются с результатами, полученными Г. В. Мишенковым по методу "гармонического баланса", если проводить сравнение максимальных значений прогибов панелей отвосительно невозмущенного состояния.

Московский авиационный институт

Поступила 22 II 1964

69

U. U. J. nuffer, P. 9. 4pppppblud

ԳԼԱՆԱՅԻՆ ՔԱՂԱՆՔԻ ՈՉ-ԳԾԱՅԻՆ ԱԿՈՒՍՏԻԿ ՏԱՏԱՆՈՒՄՆԵՐԸ

8. 8 4 1 4 1 4 1 4 5

Հոդվածում դիտարկված է ակուստիկ ճնշման տակ դանվող շիդհալական» ձևի գլանալին պանհլի և սկզբնալին անճշտունվուններով միջին մակեթեուլին ձև ունեցող պանհլի ստիպողական ոչ-դծալին տատանունների խընդիրը։ Պանհլի հոդակապալին հենման դեպքի համար թաղանիների տեսաթիան ոչ-դծալին հավասարունների սիստեմը Բուբնով-Գալլորկինի հղանակի օգնութլամբ բերվում է սովորական դիֆերենցիալ համասարման։ Ամպլիտադալին-հաճակականությունների կապը ստանալու համար օգտադործված է է, Ի, Գրիդուլուկի հղանակը։ Այնահետև բերված են տատանունների ժամանակ պանելների վարթագծի վրա կորության, սկզբնալին անճշտության վրճակ ունեցող պանելի ձևի և բեռնավորման պալմանի պարամետրների ազգնորնը ցուցադրող գրաֆիկները։ Երեք հավասարակշության վիճակ ունեցող պանելի համար հնակության հավասարակշության վիճակ

ЛИТЕРАТУРА

- Kirchman E. J. and Greenspon J. E. Nonlinear response of aircraft panels in acoustic noise. J. Acoust. Soc. Amer., 29, № 7, 1957, 854-857.
- Lassiter L, W., Hess R. W and Hubbard H. H. An experimental study of the response of simple panels to intense acoustic loading. J. Aeronaut. Sci. 24, № 1. 1957, 19-24.
- Lin Y. K. Response of a nonlinear flat panel to periodic and randomly-varying loadings. 1. Aerospace Sci. 29, No 9, 1962, 1029-1033.
- Goodman L. E., Rattayya J. V. Review of panel flutter and effects of aerodynamic noise. Applied Mech. Reviews, 13, № 2, 1960, 81—87 (перепод: "Механика", ИЛ, № 5, 1960, 135—152).
- Болотин В. В. Применение методов теории вероятностей в теории пластии и оболочек. Теория оболочек и пластии. Изд. АН АрмССР, 1964.
- Диментберг М. Ф. Нелинейные колебания упругих панелей при случайных нагрузках. Известия АН СССР, ОТН, Мех. и машимостр., № 5, 1962, 102-110.
- Григолюк Э. И. О колебаниях пологой круговой инлиндрической панели, испытывающей конечные прогибы. ПММ, 19, № 3, 1955, 376—382.
- Мишенков Г. В. Вынужденные нелинейные колебания упругих панелей. Известня: АН СССР, ОТН. Мех. и маниностр., № 4, 1961, 97—103.
- 9. Вольмир А. С. Устойчивость упругих систем, Физматгиз, М., 1963.