2U34U4U5 UUR ЭРЅПРФЗПРББЕР U4U46UPU3F SEQE4U4FP

3) приш-бирьбиим, финагрупий в XVI, № 3, 1963 Физико-математические науки

теория ползучести

М. М. Манукян, В. С. Саркисян

Кручение призматических стержней, составленных из различных материалов, с учетом нелинейной ползучести

Задача о кручении призматических стержней, составленных из различных упругих материалов, спаянных или склеенных по боковым поверхностям, исследована Н. И. Мусхелишвили [1] и К. С. Чобанином [2].

В этой работе рассматривается задача о кручении призматических стержней, составленных из нескольких отдельных призматических тел, спаянных по боковым поверхностям, в условиях нелинейной водзучести и изменения модуля мгновенной деформации материалов. В линейной постановке эта задача была изучена в работе Н. Х. Арутюняна и К. С. Чобаняна [3]. Решению задачи о кручении многослойных призматических стержней прямоугольного поперечного сечения с учетом линейной ползучести посвящена работа [5].

При решении рассматриваемой задачи будем исходить из нелишейной теории ползучести с учетом старения материала [4].

В настоящей работе получены основные нелинейные интегродиференциальные уравнения задачи и необходимые условия, при помощи которых однозначно определяется функция напряжений во всей области поперечного сечения стержня. Для решения полученных нелинейных интегральных уравнений применяется метод, изложенный в работе [6]. Пользуясь этим методом, полученные нелинейные интегральные уравнения Вольтерра второго рода приводятся к системе рекуррентных линейных интегральных уравнений. Затем рассматривается решение этих уравнений.

В работе дается обобщение теоремы Бредта о циркуляции касательных напряжений при кручении призматических стержней, составженных из различных материалов, в условиях нелинейной ползучести и изменения модуля мгновенной деформации материала.

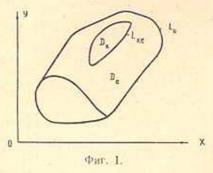
В качестве примера решается задача о кручении железобетон-

Для иллюстрации полученных результатов приводятся числовые примеры.

Постановка задачи и основные нелинейные интегральные уравнения

Рассмотрим призматический стержень, составленный из различных призматических тел, спаянных или склеенных по боковым поверхностям, когда модуль сдвига и мера ползучести материалов этих тел различны.

Области поперечного сечення, соответствующие различным материалам стержия, обозначим через $D_{\mathbf{b}}$ D_{2}, \cdots, D_{n} , линию раздела смежных областей $D_{\mathbf{k}}$ и D_{l} — через $L_{\mathbf{k}l}$, а контур всей области — через $L_{\mathbf{0}}$ (фиг. 1).



Поместим начало прямоугольной системы координат x, y, z внекоторой точке концевого сечения стержня, направив ось z параллельно его образующим.

Рассмотрим напряженное состояние данного стержия при воздействии двух закручивающих моментов M, приложенных на его торцах.

Положим, как и при кручении однородных стержней, что компоненты напряжений и деформаций, за исключением $\tau_{xz}^{(k)}$, $\tau_{yz}^{(k)}$ и $\gamma_{xz}^{(k)}$, $\tau_{yz}^{(k)}$, в любой момент времени t равны нулю, τ . е.

$$\begin{aligned}
\sigma_x^{(k)} &= \sigma_y^{(k)} = \sigma_z^{(k)} = \tau_{xy}^{(k)} = 0 \\
\varepsilon_x^{(k)} &= \varepsilon_y^{(k)} = \varepsilon_x^{(k)} = \tau_{xy}^{(k)} = 0.
\end{aligned} (k = 1, 2, ..., n)$$
(1.1)

Тогда уравнения равновесия примут вид

$$\frac{\partial \tau_{xx}^{(k)}}{\partial z} = 0, \qquad \frac{\partial \tau_{yx}^{(k)}}{\partial z} = 0, \qquad \frac{\partial \tau_{xx}^{(k)}}{\partial x} + \frac{\partial \tau_{yx}^{(k)}}{\partial y} = 0 \qquad (k = 1, 2, ..., n) \quad (1.2)$$

и будут тождественно удовлетворены, если, как обычно, положить

$$\tau_{xx}^{(k)} = \frac{\partial \varphi_k}{\partial y}, \quad \tau_{yx}^{(k)} = -\frac{\partial \varphi_k}{\partial x} \quad (k = 1, 2, ..., n).$$
 (1.3)

Здесь $\varphi_1, \varphi_2, \dots, \varphi_n$ обозначают функцию φ в областях $D_1, D_2, \dots D_n$ соответственно.

В рассмотренном случае соотношения, связывающие компоненты деформаций с соответствующими компонентами напряжений, в силу (1.1) примут следующий вид [6]:

$$\begin{split} \gamma_{xz}^{(k)}\left(t\right) &= \frac{\tau_{xz}^{(k)}\left(t\right)}{G_{k}\left(t\right)} - \int_{z_{1}}^{t} \tau_{xz}^{(k)}(z) \frac{\partial}{\partial z} \left[\frac{1}{G_{k}(z)}\right] dz - \\ &- 3 \int_{z_{1}}^{t} \tau_{xz}^{(k)}(z) F_{k} \left[z_{l}^{(k)}\left(z\right)\right] \frac{\partial C_{k}\left(t, z\right)}{\partial z} dz \end{split}$$

$$\gamma_{yz}^{(k)}(t) = \frac{\tau_{yz}^{(k)}(t)}{G_k(t)} - \int_{\tau_k}^{t} \tau_{yz}^{(k)}(\tau) \frac{\partial}{\partial \tau} \left[\frac{1}{G_k(\tau)} \right] d\tau - \\
- 3 \int_{\tau_{yz}}^{t} \tau_{yz}^{(k)}(\tau) F_k \left[\tau_l^{(k)}(\tau) \right] \frac{\partial C_k(t,\tau)}{\partial \tau} d\tau \quad (k = 1, 2, ..., n). \tag{1.4}$$

Здесь t — координата времени, τ_1 — возраст материала в момент приложения нагрузки, $C_k(t,\tau)$ — мера ползучести материала области D_k , $G_k(t)$ — модуль мгновенной деформации сдвига материала соответствующей области D_k , $F_k[\sigma_l^{(k)}(t)]$ — некоторая функция, характеризующая нелинейную зависимость между напряжениями и деформациями
ползучести для данного материала соответствующей области D_k , нормированная условием $F_k(1) = 1$, $\sigma_l^{(k)}(t)$ — интенсивность тензора напряжений в области D_k $(k=1,2,\ldots,n)$.

В данном случае выражение тензора напряжений будет иметь вид

$$\sigma_{l}^{(k)}(t) = V \left[\tau_{xz}^{(k)}(t)\right]^{2} + \left[\tau_{yz}^{(k)}(t)\right]^{2}$$
(1.5)

или

$$\sigma_{l}^{(k)}(t) = \sqrt{\left(\frac{\partial \varphi_{k}}{\partial x}\right)^{2} + \left(\frac{\partial \varphi_{k}}{\partial y}\right)^{2}}$$
 (1.6)

Условия неразрывности деформаций в силу (1.1) примут вид

$$\frac{\partial \gamma_{xz}^{(k)}}{\partial y} - \frac{\partial \gamma_{yz}^{(k)}}{\partial x} = -2\theta(t), \tag{1.7}$$

где $\theta(t)$ — угол закручивания на единицу длины стержня в момент времени t.

Подставляя выражения $\gamma_{xz}^{(k)}(t)$ и $\gamma_{yz}^{(k)}(t)$ из (1.4) в уравнение неразрывности (1.7) и учитывая (1.3), получим

$$\Delta \varphi_{k}(t) - G_{k}(t) \int_{\tau_{i}}^{t} \Delta \varphi_{k}(\tau) \frac{\partial}{\partial \tau} \left[\frac{1}{G_{k}(\tau)} \right] d\tau -$$

$$= 3G_{k}(t) \int_{\tau_{i}}^{t} \left\{ \frac{\partial}{\partial x} \left[F_{k}(\tau_{i}^{(k)}) \frac{\partial \varphi_{k}}{\partial x} \right] + \frac{\partial}{\partial y} \left[F_{k}(\tau_{i}^{(k)}) \frac{\partial \varphi_{k}}{\partial y} \right] \right\} \times$$

$$\times \frac{\partial C_{k}(t, \tau)}{\partial \tau} d\tau = -2G_{i}(t) \theta(t) \qquad (k = 1, 2, ..., n), \quad (1.8)$$

где A — оператор Лапласа по переменным x и у.

Таким образом, мы получили, что функция напряжений $\varphi_k(x,y,t)$ в областях D_k ($k=1,2,\ldots,n$) удовлетворяет интегро-дифференциальным уравнениям (1.8). Остается получить выражения контурного условия и условия на линиях раздела.

Так как боковая поверхность стержня свободна от внешних воздействий, то можем написать

$$l\tau_{xz} + m\tau_{yz} = 0$$
 на L_0 , (1.9)

где $l=\frac{d\,y}{ds}$ и $m=-\frac{d\,x}{ds}$ — направляющие косинусы нормали у к контуру $L_{\rm o}.$

Подставляя выражения так и тук из (1.3) в (1.9), получим

$$\frac{\partial \varphi}{\partial x} \frac{dx}{ds} + \frac{\partial \varphi}{\partial y} \frac{dy}{ds} = 0$$
 на L_0

$$\varphi = C_0(t)$$
 на L_0

нлн

где C_0 — произвольная функция, зависящая только от времени t.

Из условия равновесия бесконечно малого элемента, находящегося в окрестности линии раздела L_{kl} областей D_k и D_l , имеем

$$t\tau_{xz}^{(k)} + m\tau_{yz}^{(k)} = t\tau_{xz}^{(l)} + m\tau_{yz}^{(l)}$$
 is L_{kl} . (1.11)

Здесь $l=\frac{d\,y}{as}$ и $m=-\frac{d\,x}{ds}$ — направляющие косинусы нормали у к линии раздела L_{kl} . Подставляя значения τ_{xx} и τ_{yx} из (1.3) в (1.11) и интегрируя, находим

$$\varphi_k = \varphi_I + C_{kl}(t), \qquad (1.12)$$

где C_{kl} — произвольная функция от времени t.

Не нарушая общности, можно принять $C_0(t) = 0$, $C_{kl}(t) = 0$. Доказательство этого утверждения дается в работе К. С. Чобаняна [2]. Тогда условия (1.10) и (1.12) примут следующий вид:

$$\varphi = 0$$
 на L_0 (1.13)

$$\varphi_k = \varphi_l$$
 на L_{kl} . (1.14)

Остается получить условие для нормальной производной функции напряжений $\varphi(x, y, t)$ на линиях раздела L_{kl} .

Для получения этих условий напишем выражения составляющих деформации сдвига для области D_{δ}

$$\gamma_{xz}^{(k)} = \frac{\partial u_k}{\partial z} + \frac{\partial w_k}{\partial x}
\gamma_{yz}^{(k)} = \frac{\partial v_k}{\partial z} + \frac{\partial w_k}{\partial y},$$
(1.15)

где u_k , v_k , w_k — перемещения по осям x, y, z.

Подставляя выражения $\gamma_{xz}^{(k)}$ и $\gamma_{yz}^{(k)}$ из (1.4) в (1.15), получим

$$\frac{\partial w_{k}}{\partial x} = \frac{\tau_{xz}^{(k)}\left(t\right)}{G_{k}\left(t\right)} - \int_{z}^{t} \tau_{xz}^{(k)}\left(\tau\right) \frac{\partial}{\partial \tau} \left[\frac{1}{G_{k}\left(\tau\right)}\right] d\tau -$$

$$-3\int_{\tau_{k}}^{t} F_{k} \left[\sigma_{l}^{(k)}(\tau)\right] \tau_{xz}^{(k)}(\tau) \frac{\partial C_{k}(t,\tau)}{\partial \tau} d\tau - \frac{\partial u_{k}}{\partial z}, \tag{1.16}$$

$$\frac{\partial w_{k}}{\partial y} = \frac{\tau_{yz}^{(k)}(t)}{G_{k}(t)} - \int_{\tau_{k}}^{t} \tau_{yz}^{(k)}(\tau) \frac{\partial}{\partial \tau} \left[\frac{1}{G_{k}(\tau)}\right] d\tau -$$

$$-3\int_{\tau_{k}}^{t} F_{k} \left[\sigma_{l}^{(k)}(\tau)\right] \tau_{yz}^{(k)}(\tau) \frac{\partial C_{k}(t,\tau)}{\partial \tau} d\tau - \frac{\partial v_{k}}{\partial z}. \tag{1.17}$$

Умножая уравнения (1.16) на $\frac{dx}{ds}$, а (1.17) на $\frac{dy}{ds}$, складывая результаты и пользуясь (1.3), получим

$$\frac{\partial w_{k}}{\partial s} = -\frac{1}{G_{k}(t)} \frac{\partial \varphi_{k}(t)}{\partial \tau} + \int_{\tau_{k}}^{t} \frac{\partial \varphi_{k}(\tau)}{\partial \tau} \frac{\partial}{\partial \tau} \left[\frac{1}{G_{k}(\tau)} \right] d\tau +
+ 3 \int_{\tau_{k}}^{t} [\varphi_{l}^{(k)}(\tau)] \frac{\partial \varphi_{k}(\tau)}{\partial \tau} \frac{\partial C_{k}(t,\tau)}{\partial \tau} d\tau - \frac{\partial u_{k}}{\partial z} \frac{dx}{ds} - \frac{\partial v_{k}}{\partial z} \frac{dy}{\partial s},$$
(1.18)

вивая эти соотношения и принимая во внимание непрерывность перемещения w и двучленного выражения в правой части (1.18), находим условие, которому должны удовлетворять нормальные производные функции напряжений $\varphi_k(x, y, t)$ на линиях раздела L_{kl}

$$\frac{1}{G_{k}(t)} \frac{\partial \varphi_{k}(t)}{\partial v} - \int_{\tau_{i}}^{t} \frac{\partial \varphi_{k}(\tau)}{\partial v} \frac{\partial}{\partial \tau} \left[\frac{1}{G_{k}(\tau)} \right] d\tau - \\
-3 \int_{\tau_{i}}^{t} F_{k} [\sigma]^{(k)}(\tau) \left[\frac{\partial \varphi_{k}(\tau)}{\partial v} \frac{\partial G_{k}(t, \tau)}{\partial \tau} \right] d\tau = \\
= \frac{1}{G_{l}(t)} \frac{\partial \varphi_{l}(t)}{\partial v} - \int_{\tau_{i}}^{t} \frac{\partial \varphi_{l}(\tau)}{\partial v} \frac{\partial}{\partial \tau} \left[\frac{1}{G_{l}(\tau)} \right] d\tau - \\
-3 \int_{\tau_{i}}^{t} F_{l} [\sigma]^{(l)}(\tau) \left[\frac{\partial \varphi_{l}(\tau)}{\partial v} \frac{\partial G_{l}(t, \tau)}{\partial \tau} \right] d\tau. \quad \text{(iii } L_{kl}) \quad (1.19)$$

Таким образом, задача о кручении призматического стержня, составленного из различных материалов, с учетом нелинейной ползучести и изменяемости модуля мгновенной деформации материалов, свелась к определению непрерывной в области поперечного сечения стержня D_0 функции напряжений $\varphi(x, y, t)$, удовлетворяющей в соответствующих областях интегро-дифференциальным уравнениям (1.8), контурному условию (1.13) и условиям (1.14) и (1.19) на линиях раздела L_{kl} .

Выражение крутящего момента будет иметь следующий вид:

$$M = 2 \sum_{k=1}^{n} \iint_{D_k} \varphi_k(x, y, t) dx dy.$$
 (1.20)

Здесь рассматривалась задача о кручении сплошных составных стержней. Задача о кручении полых составных стержней получается из рассматриваемой задачи как частный случай.

§ 2. Обобщение теоремы Бредта

Пусть Γ — замкнутая кривая, целиком лежащая в одной из односвязных или многосвязных областей D_k поперечного сечения стержия. Как известно, циркуляцией касательных напряжений по замкнутой кривой Γ называется следующий интеграл

$$\oint_{\mathbb{R}} \left(\tau_{xz}^{(k)} \frac{dx}{ds} + \tau_{yz}^{(k)} \frac{dy}{ds} \right) ds, \tag{2.1}$$

где x = x(s) и y = y(s) — параметрические уравнения кривой, а s — длина дуги.

Подставляя выражения $\tau_{xx}^{(k)}$ и $\tau_{yx}^{(k)}$ из (1.3) в (2.1), получим выражение циркуляции через нормальную производную

$$I_{k} = - \oint_{\dot{\Gamma}} \frac{\partial \dot{\varphi}_{k}}{\partial s} ds. \tag{2.2}$$

Если умножить (1.16) и (1.17) соответственно на dx и на dy, затем сложить, то после интегрирования по кривой Γ получим

$$\oint_{\Gamma} dw_k = \frac{1}{G_k(t)} I_k(t) - \int_{\tau_k}^t I_k(\tau) \frac{\partial}{\partial \tau} \left[\frac{1}{G_k(\tau)} \right] d\tau - \\
- 3 \int_{\tau_k}^t I_k^*(\tau) \frac{\partial C_k(t, \tau)}{\partial \tau} d\tau - \oint_{\Gamma} (u_k dx + v_k dy), \tag{2.3}$$

гле

$$I_{k}^{*}(t) = \bigoplus_{i} F_{k} \left[z_{i}^{(k)}(t) \right] \left[z_{sz}^{(k)} \frac{dx}{ds} + z_{yz}^{(k)} \frac{dy}{ds} \right] ds = - \bigoplus_{i} F_{k} \left[z_{i}^{(k)}(t) \right] \frac{\partial z_{k}}{\partial y} \partial s. \quad (2.4)$$

Применяя к последнему интегралу в выражении (2.4) формулу Грина-Остроградского, находим

$$\oint_{\Gamma} dw_k = \frac{1}{G_k(t)} I_k(t) - \int_{\tau_k}^{t} I_k(\tau) \frac{\partial}{\partial \tau} \left[\frac{1}{G_k(\tau)} \right] d\tau - 3 \int_{\tau_k}^{t} I_k^*(\tau) \frac{\partial C_k(t, \tau)}{\partial \tau} d\tau - \frac{\partial}{\partial z} \int_{D} \left(\frac{\partial v_k}{\partial x} - \frac{\partial u_k}{\partial y} \right) dx dy. \tag{2.5}$$

Здесь, в выражении (2.5), двойной интеграл распространен по области D, ограниченной замкнутой кривой Γ .

Подставляя выражения $\gamma_{zz}^{(k)}$ и $\gamma_{yz}^{(k)}$ из (1.15) в (1.7), находим

$$\frac{\partial}{\partial z} \left(\frac{\partial v_k}{\partial x} - \frac{\partial u_k}{\partial y} \right) = 26 (t). \tag{2.6}$$

Здесь компоненты перемещений должны быть однозначными функциями в каждый момент времени t во всех областях D_k , поэтому будем иметь

$$\oint_{\dot{\Gamma}} dw_k = 0, \tag{2.7}$$

Тогда из (2.5), (2.6) и (2.7) получим

$$I_{k}(t) - G_{k}(t) \int_{\tau_{1}}^{t} I_{k}(t) \frac{\partial}{\partial \tau} \left[\frac{1}{G_{k}(\tau)} \right] d\tau -$$

$$-3G_{k}(t) \int_{\tau_{1}}^{t} I_{k}^{*}(\tau) \frac{\partial C_{k}(t, \tau)}{\partial \tau} d\tau = -2G_{k}(t) \theta(t) S, \qquad (2.8)$$

rae

$$S = \iint_{\langle D \rangle} dx dy.$$

Нелинейное интегральное уравнение (2.8) представляет собой обобщение теоремы Бредта о циркуляции касательных напряжений при кручении составного призматического стержня с учетом неливейной ползучести и изменяемости модуля мгновенной деформации изтериала.

Пользуясь условием (1.19), формулу Бредта можно обобщить и для такой замкнутой линии Γ , которая лежит внутри области D_0 поверечного сечения стержня и пересекает линии раздела L_{kl} . Тогда область D, ограниченная линией Γ и линиями раздела L_{kl} , разбивается по несколько областей, в каждой из которых справедлива обобщенная формула Бредта (2.8).

Используя соотношения (2.3) и (2.4), интегральное уравнение (2.8) можно написать в следующем виде:

$$\oint_{\Gamma} \frac{1}{G_{k}(t)} \frac{\partial \varphi_{k}}{\partial s} ds - \int_{\tau_{k}}^{t} \left[\oint_{\Gamma} \frac{\partial \varphi_{k}}{\partial s} ds \right] \frac{\partial}{\partial \tau} \left[\frac{1}{G_{k}(\tau)} \right] d\tau -$$

$$-3\int_{\tau_{k}}^{t} \left\{ \bigoplus_{i} F_{k} \left[\sigma_{i}^{(k)}(\tau)\right] \frac{\partial \varphi_{k}}{\partial \tau} ds \right\} \frac{\partial C_{k}(t, \tau)}{\partial \tau} d\tau = -29(t) S. \quad (2.9)$$

Если принять, что $G_k\left(t\right)=G_k=\mathrm{const},$ то (2.9) примет вид:

$$\oint_{\Gamma} \frac{\partial \varphi_{k}}{\partial s} ds - 3G_{k} \oint_{\zeta_{k}} \left[\oint_{\Gamma} F_{k} \left(\sigma_{k}^{(k)} \right) \right] \frac{\partial \varphi_{k}}{\partial s} ds = -2G_{k} \theta \left(t \right) S.$$
(2.10)

В частном случае, при линейной ползучести это интегральное уравшние совпадает с уравнением, полученным в работе [3].

§ 3. Приведение нелинейного интегрального уравнения (1.8) к рекуррентным линейным интегральным уравнениям

Переходим к решению основного нелинейного уравнения (1.8). Для этого заранее нужно иметь вид функции F_{δ} ($\sigma_{i}^{(k)}$).

Пусть $F_k \left[\sigma_k^{(k)} \left(t \right) \right]$ является степенной функцией вида

$$F_k[\sigma_i^{(k)}(t)] = \alpha_k + \beta_k[\sigma_i^{(k)}(t)]^{m-1} \quad m > 1, \quad (k=1, 2, ...n)$$
 (31)

где α_h , β_k , m — постоянные параметры, определяемые из опыта.

Экспериментальные исследования показывают, что степенным зконом вида (3.1) достаточно хорошо описываются кривые ползучест при высоких напряжениях для ряда материалов [4] (как, например бетон, дерево, фенольная пластмасса и др.). Одновременно эти же опил показывают, что для указанных материалов величина β_k является илой ($\beta_k < 1$).

Малый параметр β_k для первой области D_1 обозначим через! Пусть β_k выражается через β следующей формулой

$$\beta_k = \lambda_k \beta$$
 $(k-1, 2, ..., n),$ (33)

где λ — постоянное число, определяемое из опыта, причем $\lambda_{\rm T}=1$. Подставляя выражение $F_k\left[\sigma_i^{(k)}(t)\right]$ из (3.1) в соотношения (1.8) г (1.19) и пользуясь соотношением (1.6), получим

$$-3\beta_{k}\int_{\tau_{i}}^{t} \frac{\partial \varphi_{k}(\tau)}{\partial \tau} N_{k} \left[\varphi_{i}(\tau)\right] \frac{\partial C_{k}(t, \tau)}{\partial \tau} d\tau =$$

$$= \frac{1}{G_{l}(t)} \frac{\partial \varphi_{l}(t)}{\partial \tau} - \int_{\tau_{i}}^{t} \frac{\partial \varphi_{l}(\tau)}{\partial \tau} \frac{\partial}{\partial \tau} \left[\frac{1}{G_{l}(\tau)} + 3\alpha_{l} C_{l}(t, \tau)\right] d\tau -$$

$$-3\beta_{l}\int_{\tau_{i}}^{t} \frac{\partial \varphi_{l}(\tau)}{\partial \tau} N_{l} \left[\varphi_{l}(\tau)\right] \frac{\partial C_{l}(t, \tau)}{\partial \tau} d\tau, \qquad (k=1, 2, ..., n) \qquad (3.4)$$

2000

$$\begin{split} M_k\left(\varphi_k\right) &= \frac{\partial}{\partial x} \left\{ \left[\left(\frac{\partial \varphi_k}{\partial x} \right)^2 + \left(\frac{\partial \varphi_k}{\partial y} \right)^2 \right]^{\frac{m-1}{2}} \frac{\partial \varphi_k}{\partial x} \right\} + \\ &+ \frac{\partial}{\partial y} \left\{ \left[\left(\frac{\partial \varphi_k}{\partial x} \right)^2 + \left(\frac{\partial \varphi_k}{\partial y} \right)^2 \right]^{\frac{m-1}{2}} \frac{\partial \varphi_k}{\partial y} \right\} \end{split}$$

представляет собой эллиптический оператор типа Монжа-Ампера, а

$$N_{J}(\varphi_{k}) = \left[\left(\frac{\partial \varphi_{k}}{\partial x} \right)^{2} + \left(\frac{\partial \varphi_{k}}{\partial y} \right)^{2} \right]^{\frac{m-1}{2}}$$

Только для упрощения дальнейших выкладок будем полагать, по

$$G_k(t) = G_k = \text{const.}$$

Тогда уравнения (3,3) и (3.4) примут следующий вид:

$$\Delta \varphi_{k}(t) - \alpha_{k} \int_{\tau_{k}}^{t} \Delta \varphi_{k}(\tau) K_{k}(t, \tau) d\tau -$$

$$-\beta_{k} \int_{\tau_{k}}^{t} M_{k} [\varphi_{k}(x, y, \tau)] K_{k}(t, \tau) d\tau = -2 G_{k} \theta(t), \qquad (3.5)$$

$$\frac{\partial \varphi_{k}(t)}{\partial \tau} - \alpha_{k} \int_{\tau_{k}}^{t} \frac{\partial \varphi_{k}(t)}{\partial \tau} K_{k}(t, \tau) d\tau -$$

$$-\beta_{k} \int_{\tau_{k}}^{t} \frac{\partial \varphi_{k}(\tau)}{\partial \tau} N_{k} [\varphi_{k}(\tau)] K_{k}(t, \tau) d\tau =$$

$$= \mu \left\{ \frac{\partial \varphi_{l}(t)}{\partial \tau} - \alpha_{l} \int_{\tau_{k}}^{t} \frac{\partial \varphi_{l}(\tau)}{\partial \tau} K_{l}(t, \tau) d\tau -$$

$$-\beta_{l} \int_{\tau_{k}}^{t} \frac{\partial \varphi_{l}(t)}{\partial \tau} N_{l} [\varphi_{l}(\tau)] K_{l}(t, \tau) d\tau \right\}, \qquad (3.6)$$

тде

$$K_{-}(t, \tau) = 3G_k \frac{\partial C_k(t, \tau)}{\partial \tau}, \quad \mu = \frac{G_k}{G_l}.$$

Таким образом, решение рассматриваемой задачи приводится к решению нелинейного интегро-дифференциального уравнения (3.5). Точное решение этого уравнения связано с практически непреодолимой трудностью.

 Ищем решение уравнения (3.5), пользуясь методом решения нелинейного интегрального уравнения Вольтерра второго рода, развитым в работе [6].

Представим решение уравнения (3.5) по степеням малого параметра β

$$\varphi_k(x, y, t) = \varphi_k^{(0)}(x, y, t) + \beta \lambda_k \varphi_k^{(1)}(x, y, t) + \beta^2 \lambda_k^2 \varphi_k^{(2)}(x, y, t) + \cdots$$
 (3.7)

Очевидно, что $\varphi_k^{(0)}(x, y, t)$ есть функция напряжений при линейной ползучести, т. е. когда $\beta = 0$.

Необходимо отметить, что строгое математическое обоснование этого метода решения нелинейного интегрального уравнения дано в работе [6].

Подставляя значения $\varphi_k(x, y, t)$ из (3.7) в (3.5) и приравнивая коэффициенты при одинаковых степенях β , получим

$$\Delta \varphi_{k}^{(0)}(t) - \alpha_{k} \int_{z_{k}}^{t} \Delta \varphi_{k}^{(0)}(z) K_{k}(t, z) dz = -2G_{k}\theta(t), \qquad (3.8)$$

$$\Delta \varphi_{k}^{(1)}(t) - \alpha_{k} \int_{0}^{t} \Delta \varphi_{k}^{(1)}(\tau) K_{k}(t, \tau) d\tau = \int_{0}^{t} M_{k}(\varphi_{k}^{(0)}) K_{k}(t, \tau) d\tau, \quad (3.9)$$

$$\Delta \varphi_{k}^{(2)}(t) - \alpha_{k} \int_{\tau_{i}}^{t} \Delta \varphi_{k}^{(2)} K_{k}(t, \tau) d\tau = m \int_{\tau_{i}}^{t} \overline{M}_{k}(\varphi_{k}^{(0)}, \varphi_{k}^{(1)}) K_{k}(t, \tau) d\tau, \quad (3.10)$$

-тде

$$\begin{split} M_k \left(\varphi_k^{(0)} \right) &= \frac{\partial}{\partial x} \left\{ \left[\left(\frac{\partial \varphi_k^{(0)}}{\partial x} \right)^2 + \left(\frac{\partial \varphi_k^{(0)}}{\partial y} \right)^2 \right]^{\frac{m-1}{2}} \frac{\partial \varphi_k^{(0)}}{\partial x} \right\} + \\ &+ \frac{\partial}{\partial y} \left\{ \left[\left(\frac{\partial \varphi_k^{(0)}}{\partial x} \right)^2 + \left(\frac{\partial \varphi_k^{(0)}}{\partial y} \right)^2 \right]^{\frac{m-1}{2}} \frac{\partial \varphi_k^{(0)}}{\partial y} \right\}, \end{split} \tag{3.11} \\ \overline{M}_k \left(\varphi_k^{(0)}, \ \varphi_k^{(1)} \right) &= \frac{\partial}{\partial x} \left\{ \left[\left(\frac{\partial \varphi_k^{(0)}}{\partial x} \right)^2 + \left(\frac{\partial \varphi_k^{(0)}}{\partial y} \right)^2 \right]^{\frac{m-1}{2}} \frac{\partial \varphi_k^{(1)}}{\partial x} + \\ &+ (m-1) \left[\left(\frac{\partial \varphi_k^{(0)}}{\partial x} \right)^2 + \left(\frac{\partial \varphi_k^{(0)}}{\partial y} \right)^2 \right]^{\frac{m-1}{2} - 1} \left(\frac{\partial \varphi_k^{(0)}}{\partial x} \cdot \frac{\partial \varphi_k^{(1)}}{\partial x} + \right] \end{split}$$

$$+ \frac{\partial \varphi_{k}^{(0)}}{\partial y} \frac{\partial \varphi_{k}^{(1)}}{\partial y} \right) \frac{\partial \varphi_{k}^{(0)}}{\partial x} + \frac{\partial}{\partial y} \left\{ \left[\left(\frac{\partial \varphi_{k}^{(0)}}{\partial x} \right)^{2} + \left(\frac{\partial \varphi_{k}^{(0)}}{\partial y} \right)^{2} \right]^{\frac{m-1}{2}} \frac{\partial \varphi_{k}^{(1)}}{\partial y} + (m-1) \left[\left(\frac{\partial \varphi_{k}^{(0)}}{\partial x} \right)^{2} + \left(\frac{\partial \varphi_{k}^{(0)}}{\partial y} \right)^{2} \right]^{\frac{m-1}{2}-1} \left(\frac{\partial \varphi_{k}^{(0)}}{\partial x} \frac{\partial \varphi_{k}^{(1)}}{\partial x} + \frac{\partial \varphi_{k}^{(0)}}{\partial y} \frac{\partial \varphi_{k}^{(1)}}{\partial y} \right) \frac{\partial \varphi_{k}^{(0)}}{\partial y} \right\}. \quad (3.12)$$

Таким образом, решение нелинейного интегро-дифференциального уравнения (3.5) сводится к решению системы рекуррентных линейных интегро-дифференциальных уравнений (3.8), (3.9), (3.10) с контурным условием (1.13) и условиями на линиях раздела L_{kl} (1.14) и (3.6).

§ 4. Решение рекуррентных линейных интегральных уравнений

Займемся решением полученных интегральных уравнений. Решив интегро-дифференциальное уравнение (3,8), получим

$$\Delta \varphi_k^{(0)}(t) = -2G_k(t) \psi_{0,k}(t),$$
 (4.1)

где $R(t, \tau, \alpha_k)$ — резольвента линейного интегрального уравнения Вольгерра с ядром

$$K_k(t, \tau) = 3G_k \frac{\partial C_k(t, \tau)}{\partial \tau},$$
 (4.2)

$$\Phi_{0,k}(t) = \theta(t) + \alpha_k \int_{\tau_k}^{t} \theta(\tau) R_k(t, \tau, \alpha_k) d\tau. \tag{4.3}$$

Если принять, что мера ползучести материала определяется зашенмостью [4]

$$C_k(t, \tau) = \varphi_k(\tau) \left[1 - e^{-\gamma_k(t-\tau)}\right],$$
 (4.4)

гле $\tau_k(\tau)$ — некоторая монотонно убывающая функция, характеризующая изменение меры ползучести материала в зависимости от его возраста τ , а τ_k — постоянный параметр, то резольвента определяется следующей формулой [4]:

$$\alpha_{k}R_{k}(t, \tau, \alpha_{k}) = \gamma_{k} - \eta_{k}'(\tau) + \left[\eta_{k}'(\tau) + \eta_{k}'(\tau) - \gamma_{k}\eta_{k}'(\tau)\right]e^{\gamma_{k}(\tau)}\int_{t}^{t} e^{-\gamma_{k}(x)} dx, \tag{4.5}$$

плесь

$$\tau_k(\tau) = \gamma_k \int_{\tau_k}^{\tau} \left[1 + 3G_k \alpha_k \varphi_k(\tau)\right] d\tau. \tag{4.6}$$

Положим, что

$$\varphi_k(\tau) = \frac{A_{1,k}}{\tau} + C_{0,k},$$
(4.7)

где $A_{1,k}$ и $C_{0,k}$ — некоторые параметры, характеризующие интенсивность изменения меры ${}^{\sharp}$ ползучести материала C_k (t, τ) соответственно в раннем и старом возрасте материала.

Аналогичным образом решение уравнений (3.9) и (3.10) можно представить в следующем виде:

$$\Delta \varphi_{k}^{(1)}(t) = \psi_{1,k}(x, y, t) + \alpha_{k} \int_{\tau_{1}}^{t} \psi_{1,k}(x, y, \tau) R_{k}(t, \tau, \alpha_{k}) d\tau, \quad (4.8)$$

$$\Delta \varphi_{k}^{(2)}(t) = \psi_{2,k}(x, y, t) + \alpha_{k} \int_{z_{k}}^{t} \psi_{2,k}(x, y, z) R_{k}(t, z, \alpha_{k}) dz, \qquad (4.9)$$

где

$$\psi_{1,k}(x, y, t) = \int_{\tau_k}^{t} M_k(\varphi_k^{(0)}) K_k(t, \tau) d\tau, \qquad (4.10)$$

$$\psi_{2,k}(x,y,t) = \int_{z_k}^{t} \overline{M}_k(\varphi_k^{(0)}, \varphi_k^{(1)}) K_k(t,z) dz.$$
 (4.11)

Заметим, что значения $\varphi_k^{(0)}$, $\varphi_k^{(1)}$, $\varphi_k^{(2)}$, \cdots будут последовательно определяться путем интегрирования дифференциальных уравнений (4.1), (4.8) и (4.9), при этом полученные решения должны удовлетворять контурному условию (1.13) и условиям на линиях раздела (1.14) и (3.6).

Необходимо отметить, что в выражения $\varphi_k^{(0)}$, $\varphi_k^{(1)}$, $\varphi_k^{(2)}$, \cdots будет входить неизвестная величина $\theta(t)$. Для ее определения нужно подставить значения $\varphi_k^{(0)}$, $\varphi_k^{(1)}$, $\varphi_k^{(2)}$, \cdots в выражения крутящего момента (1.7) и определить оттуда $\theta(t)$.

§ 5. Кручение железобетонного стержня с узким прямоўгольным сечением

В качестве приложения вышеизложенных результатов рассмотрим кручение призматического стержня, составленного из двух слоев различной толщины с сечением в виде узкого прямоугольника ($a\gg b_1,\ h_2$) (фиг. 2).

Предволожим, что слои стержня изготовлены из различных материалов с модулями сдвигов $G_1(t)$ и $G_2(t)$. Пусть в области D_1 материал обладает нелинейной ползучестью, а в D_2 — справедлив закон Гуки.

В этом случае, как известно, в уравнениях (3.3) можно пренебречь производной функции напряжений $\varphi_k(x, y, t)$ по x и заменить (3.2) уравнениями вида

$$\frac{\partial^{2} \varphi_{1}(y, t)}{\partial y^{2}} - G_{1}(t) \int_{\tau_{1}}^{t} \frac{\partial^{2} \varphi_{1}(y, \tau)}{\partial y^{2}} \left[\frac{1}{G_{1}(\tau)} + 3\alpha C(t, \tau) \right] d\tau - 3\beta G_{1}(t) \int_{\tau_{1}}^{t} \frac{\partial}{\partial y} \left[\frac{\partial \varphi_{1}(y, \tau)}{\partial y} \right]^{m} \frac{\partial C(t, \tau)}{\partial \tau} d\tau = -2G_{1}(t) \theta(t), \quad (5.1)$$

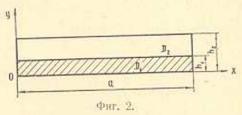
$$\frac{\partial \tilde{\tau}_{2}^{2}(y, t)}{\partial y^{2}} = -2G_{e}(t) \theta(t), \quad (5.2)$$

Если принять, что

$$G_1(t) = G_1 = \text{const},$$

$$G_2(t) = G_2 = \text{const},$$

то после интегрирования, уравнешия (5.1) и (5.2) примут следуюший вид:



$$\frac{\partial \varphi_{1}(y, t)}{\partial y} - \alpha \int_{z_{1}}^{t} \frac{\partial \varphi_{1}(y, z)}{\partial y} K(t, z) dz - \beta \int_{z_{1}}^{t} \left[\frac{\partial \varphi_{1}(y, z)}{\partial y} \right]^{m} K(t, z) dz = -2G_{1}\theta(t) y + B_{1}(t), \quad (5.3)$$

$$\frac{\partial \varphi_{3}(y, t)}{\partial y} = -2G_{3}\theta(t) y + B_{2}(t), \tag{5.4}$$

где $B_1(t)$ и $B_2(t)$ — произвольные функции от t. Решение уравнения (5.1) ищем в виде ряда

$$\varphi_1(y, t) = \varphi_1^{(0)}(y, t) + \beta \varphi_1^{(1)}(y, t) + \beta^2 \lambda^2 \varphi_1^{(2)}(y, t) + \cdots$$
 (5.5)

Подставляя это выражение в уравнение (5.3) и приравнивая коэффициенты при одинаковых степенях 3, получим

$$\frac{\partial \varphi_{1}^{(0)}(y, t)}{\partial y} - \alpha \int_{\tau_{1}}^{t} \frac{\partial \varphi_{1}^{(0)}(y, \tau)}{\partial y} K(t, \tau) d\tau = -2G_{1}\theta(t) y + B_{1}(t), \quad (5.6)$$

$$\frac{\partial \varphi_{1}^{(1)}(y,t)}{\partial y} - \alpha \int_{z_{1}}^{t} \frac{\partial \varphi_{1}^{(1)}(y,\tau)}{\partial y} K(t,\tau) d\tau = \int_{z_{1}}^{t} \left[\frac{\partial \varphi_{1}^{(0)}(y,\tau)}{\partial y} \right]^{m} K(t,\tau) d\tau, \quad (5.7)$$

$$\frac{\partial \varphi_1^{(2)}(y,t)}{\partial y} - \alpha \int_{z_1}^{t} \frac{\partial \varphi_1^{(2)}(y,\tau)}{\partial y} K(t,\tau) d\tau = 0$$

$$= m \int_{z_1}^{t} \left[\frac{\partial \varphi_1^{(0)}(y,\tau)}{\partial y} \right]^{m-1} \frac{\partial \varphi_1^{(1)}(y,\tau)}{\partial y} K(t,\tau) d\tau. \tag{5.8}$$

Таким образом, решение нелинейного интегрального уравнения (5.3) сводится к решению рекуррентных линейных интегральных уравнений (5.6), (5.7), (5.8).

Займемся решением этих уравнений. Решение уравнения (5.6) будет

$$\frac{\partial \varphi_{\parallel}^{(0)}(y, t)}{\partial y} = H_{\emptyset}(t, \tau_{\downarrow}, y), \qquad (5.9)$$

здесь

$$H_0(t, \tau_1, y) = -2G_1\theta(t)y + B_1(t) + \alpha \int_{\tau_1}^{t} [-2G_1\theta(\tau)y + B_1(\tau)]R(t, \tau, \alpha)d\tau,$$
(5.10)

где $R\left(t,\,\tau,\,\alpha\right)$ — резольвента линейного интегрального уравнения Вольтерра с ядром

$$K(t, \tau) = 3G_1 \frac{\partial C(t, \tau)}{\partial \tau}.$$
 (5.11)

Если для меры ползучести принять

$$C(t, \tau) = \left(\frac{A_1}{\tau} + C_0\right) [1 - e^{-\gamma(t-\tau)}],$$
 (5.12)

где A_1 , C_0 , γ — постоянные параметры, определяемые из опыта, то выражение резольвенты $R(t, \tau, \alpha)$ можно представить в следующем виде:

$$\alpha R(t, \tau, \alpha) = \gamma - \eta'(\tau) + [\eta'^{2}(\tau) + \eta''(\tau) - \eta\eta'(\tau)] e^{\eta(\tau)} \int_{\tau}^{t} e^{-\eta(x)} dx, \quad (5.13)$$

где

$$\eta(\tau) = i \int_{\tau}^{\tau} \left[1 + 3\alpha G_1 \left(\frac{A_1}{\tau} + C_0 \right) \right] d\tau. \tag{5.14}$$

Решение уравнения (5.7) будет

$$\frac{\partial \varphi_{1}^{(1)}(y, t)}{\partial y} = H_{1}(t, \tau_{1}, y) + \alpha \int_{\tau_{1}}^{t} H_{1}(\tau, \tau_{2}, y) R(t, \tau, \alpha) d\tau.$$
 (5.15)

Здесь положено

$$H_1(t, \tau_1, y) = \int_{\tau_1}^{t} [H_0(\tau, \tau_1, y)]^m K(t, \tau) d\tau.$$
 (5.16)

Если удовлетвориться только первыми двумя приближениями, то решение нелинейного интегрального уравнения (5.3) можно представить в следующем виде:

$$\frac{\partial \tau_1(y, t)}{\partial y} = H_0(t, \tau_1, y) + \beta \left[H_1(t, \tau_1, y) + \alpha \int_{\tau_1}^{t} H_1(\tau, \tau_1, y) R(t, \tau, \alpha) d\tau \right]. \tag{5.17}$$

Из уравнений (5.17) и (5.4) нужно определить функции напряжений $\varphi_1(y, t)$ и $\varphi_2(y, t)$. К этим уравнениям (5.17) и (5.4) нужно присоединить контурное условие (1.13) и условия на линии раздела. (1.14) и (3.5), которые в данном случае примут следующий вид:

$$\varphi_1(0, t) = 0$$
 (5.18)

$$\varphi_2(h_2, t) = 0$$
 (5.19)

$$\varphi_1(h_1, t) = \varphi_2(h_1, t)$$
 (5.20).

$$\frac{\partial \varphi_{1}\left(y,\ t\right)}{\partial y}\Big|_{y=h_{1}} = \alpha \int_{\tau_{1}}^{t} \frac{\partial \varphi_{1}\left(y,\ \tau\right)}{\partial y}\Big|_{y=h_{1}} K\left(t,\ \tau\right) d\tau =$$

$$= \beta \int_{\tau_1}^{t} \left[\frac{\partial \varphi_1(y, \tau)}{\partial y} \right]^m \bigg|_{y=h_1} K(t, \tau) d\tau = \frac{G_1}{G_2} \frac{\partial \varphi_2(y, t)}{\partial y} \bigg|_{y=h_2} .$$
 (5.21)

Решения обыкновенных дифференциальных уравнений (5.17) и (5.4) будут

$$\varphi_1(y, t) = f_1(y, t) + D_1(t)$$
 (5.22)

$$\varphi_2(y, t) = f_2(y, t) + D_2(t).$$
 (5.23)

BECCH

$$f_{1}(y, t) = \int_{0}^{y} \left\{ H_{0}(t, \tau_{1}, y) + \beta \left[H_{1}(t, \tau_{1}, y) + \frac{1}{2} \int_{0}^{t} H_{1}(\tau, \tau_{1}, y) R(t, \tau, \alpha) d\tau \right] \right\} dy,$$
 (5.24).

$$f_2(y, t) = -G_2\theta(t)y^2 + B_2(t),$$
 (5.25)

 $B_1(t), B_2(t), D_1(t), D_2(t)$ и $\theta(t)$ — неизвестные величины.

Подставляя значения $\varphi_1(t)$ и $\varphi_2(t)$ из (5.22) и (5.23) в уравне-

$$D_1(t) = 0,$$
 (5.26)

$$D_2(t) - G_2 \theta(t) h_2^2 + B_2(t) = 0 (5.27)$$

$$f_1(h_1, t) = -G_2\theta(t)h_1^2 + B_2(t)$$
 (5.28).

$$\frac{\partial f_{1}(y, t)}{\partial y}\Big|_{y=h_{1}} - a \int_{z_{1}}^{t} \frac{\partial f_{1}(y, \tau)}{\partial y}\Big|_{y=h_{1}} K(t, \tau) d\tau - \left[\int_{z=h_{1}}^{t} \left(\frac{\partial f_{1}(y, \tau)}{\partial y} \right) \right]^{m} \Big|_{y=h_{1}} K(t, \tau) d\tau = -2G_{1}\theta(t) h_{1}. \quad (5.29)$$

$$\int_{0}^{h_{1}} f_{1}(y, t) dy + \left[B_{2}(t) + D_{2}(t)\right] (h_{2} - h_{1}) - G_{2}\theta'(t) \frac{h_{2}^{3} - h_{1}^{3}}{3} = \frac{M}{2a}.$$
 (5.30)

Из этих уравнений (5.26)—(5.30) нужно определить неизвестные функции $B_1(t)$, $B_2(t)$, $D_1(t)$, $D_2(t)$ и $\theta(t)$.

Решая уравнения (5.26), (5.27), (5.28) и (5.30) относительно неизвестных функций $B_2(t)$, $D_1(t)$, $D_2(t)$ и $\theta(t)$, найдем для них следующие выражения:

$$D_1(t) = 0,$$
 (5.31)

$$D_{2}(t) = -f_{1}(h_{1}, t) + a_{1} \int_{0}^{h_{1}} f_{1}(y, t) dy + b_{1}, \qquad (5.32)$$

$$B_{2}(t) = f_{1}(h_{1}, t) + a_{2} \int_{0}^{h_{1}} f_{1}(y, t) dy + b_{2},$$
 (5.33)

$$\theta(t) = a_3 \int_0^{h_1} f_1(y, t) dy + b_3, \tag{5.34}$$

тде

$$a_1 = a_3G_2 (h_2^2 - h_1^2),$$
 $a_2 = a_3G_2h_1^2$
 $b_1 = b_3G_2 (G_2^2 - h_1^2),$ $b_2 = b_3G_2h_1^2$

$$(5.35)$$

$$a_3 = \frac{3}{G_2} \frac{1}{(h_2 - h_1)(h_1^2 + h_1 h_2 - 2h_2^2)}$$
(5.36)

$$b_3 = \frac{3M}{2aG_3} \frac{1}{(h_2 - h_1)(2h_2^2 - h_1h_2 - h_1^2)}.$$
 (5.37)

Подставдяя выражения $B_2(t)$, $D_1(t)$, $D_2(t)$ и $\theta(t)$ соответственно из (5.24), (5.25), (5.33) и (5.34) в уравнение (5.29) и пользуясь соотношениями (5.10) и (5.16), получим нелинейное интегральное уравнение относительно неизвестной $B_1(t)$. Решая это уравнение методом Крылова-Боголюбова, определяем неизвестную функцию $B_1(t)$.

Затем из (5,22) и (5,23) определяем значения функций напряжений $\varphi_1(y, t)$ и $\varphi_2(y, t)$. Имея значения функций напряжений, в каждой области можно определить величины компонентов напряжений в данном железобетонном стержне в произвольный момент времени t.

Угол закручивания $\theta(t)$ напряжения в бетоне $\tau_{xx}^{(t)}$ и в арматуре $\tau_{xx}^{(a)}$ можно представить в зависимости от времени t в следующем виде:

$$\theta(t) = \theta^*(t, \tau_1) \theta(\tau_1)$$

 $\tau_{xx}^{(i)} = R_{\bar{x}}(t, \tau_1) \tau_{xx}^{(i)}(y, \tau_1)$
 $\tau_{xx}^{(a)} = R_{a}(t, \tau_1) \tau_{xx}^{(0)}(y, \tau_1),$

где R_b , R_a — коэффициенты, характеризующие изменение напряженного состояния в бетоне и в арматуре в зависимости от интенсивности меры ползучести $C(t, \tau)$, возраста бетона τ_1 , меры пелинейности β , а $\theta^*(t, \tau_1)$ характеризует изменение угла закручивания во времени под влиянием нелинейной ползучести.

Ниже, в таблице, приводится результат вычислений значений коэффициентов $R_\delta(t,\tau_1)$, $R_a(t,\tau_1)$ и $\theta^a(t,\tau_1)$ в зависимости от времени t для железобетонной балки с узким прямоугольным поперечным сечением, находящейся под действием постоянных крутящих моменлов M, приложенных на ее торцах в возрасте бетона $\tau_1 = 14$ дней.

В данном случае приняты следующие характеристики меры ползучести бетона при чистом сдвиге:

$$3A_1 = 12,05 \cdot 10^{-5}$$
, $3C_0 = 2,25 \cdot 10^{-6}$, $\gamma = 0,026$, $G_1 = 8 \cdot 10^4 \frac{\kappa c}{c M^2}$, $G_2 = 8 \cdot 10^5 \frac{\kappa c}{c M^2}$, $h_2 = 10h_1$, $\sigma = 0.99$, $\beta = 0.01$, $m = 2$.

						Таблица 1	
<i>t</i> в днях	$R_3(t, \tau_i)$		$R_a(t, \tau_i)$		$\hat{v}^*(t, \tau_1)$		
	β=0	$\beta = 0.01$	3=0	8=0,01	β=0	8=0,01	
14	1	1	1	1	1	1	
28	0,6302	0,6265	1,0671	1,0698	1,0664	1,0670	
45	0,5013	0,4904	1,1324	1,1004	1,0982	1,0989	
90	0,4138	0,4109	1,1806	1,1018	1,1007	1,1010	
180	0,3273	0,3207	1,1902	1,1031	1,1018	1,1020	
360	0,3273	0,3207	1,1902	1,1031	1.1018	1,1020	
			1		1		

Из таблицы видно, что начальные касательные напряжения в бетове $\tau_{xx}^{(i)}$ с течением времени под влиянием нелинейной ползучести бетова быстро затухают, а в арматуре возрастают.

Институт математики и механики АН Арминской ССР Ереванский государственный университет

Մ. Մ. Մանուկյան, Վ. Ս. Սաբգոյան

ՊՐԻԶՄԱՅԱՁԵՎ ԲԱՂԱԴՐՅԱԼ ՁՈՂԵՐԻ ՈԼՈՐՈՒՄԸ ՈՉ-ԳԾԱՅԻՆ ՍՈՂՔԻ ՀԱՇՎԱՌՈՒՄՈՎ

UTONORPU

Հոդվածում գննարկվում է տարբեր նյուներից կազմված պրիզմայաձև ձողերի ոլորման խնդիրը, երբ լարման և սողբի գեֆորմացիայի միջև գոյու-Սյուն ունի ոչ-գծային կապ [4]։

Այս խնդրի լուժումը գժային սողջի դեպքում ավել են Ն. Խ. Հարությունյանը և Կ. Ս. Չորանյանը [3]։

Խնդրի լուժման ժամանակ ստացվում են ոչ-գծային վոլտերի 2-րդ սեռի ինտեղրալ հավասարումներ, որոնք փոքր պարամետրերի մեկեոդի օգնուկյամբ բերվում են գծային ռեկկուրենտ հավասարումների, վերջիններս հեշտուβյամբ հաջորդաբար ինտեդրվում են։

Որպես օրինակ լուծված է երկաքերետոնի ուղղանկյուն լայնական կտրըվածը ունեցող ձողի ոլորումը ոչ-դծային սողջի հաչվառումով։

Կազմված են լարումների և ոլորման անկյան համար աղյուսակներ։

ЛИТЕРАТУРА

- Мусхелишвили Н. И. Некоторые основные задачи математической теории упругости. Изд. АН СССР, М.-Л., 1954.
- Чобанян К. С. Применение функции напряжения в задаче о кручении призматических стержней, составленных из различных материалов. Известия АН Армянской ССР, серия физ.-мат., ест. и техи. наук. 8, № 2, 1955.
- Арутнонян Н. Х., Чобанян К. С. О кручении призматических стержней, составленных из различных материалов с учетом ползучести. Известия АН СССР, ОТН, № 6, 1956.
- 4. Арутновян Н. Х. Некоторые вопросы теории ползучести. Гостехиздат, М.-Л., 1952.
- Саркисян В. С. Кручение многослойных призматических стержней прямоугольного поперечного сечения с учетом линейной ползучести. Известия АН АрмССР, серия физ.-мат. наук, 12, № 4, 1959.
- Арутюнян Н. Х., Манукян М. М. Кручение топкостенных стержней открытого профиля в условиях неустановившейся ползучести. Известия АН СССР, ОТН, Механика и машиностроение, № 6, 1959.