ДИЗЧИЧИЪ ПОМ ЧРЅПРМ-ЗПРЪБЪРР ИЧИЧЪПРИЗР ЅЪДЪЧИЧЪР ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЯ ССР

Зիарірш-бирьбит, арматрукават XV, № 2 1962 Физико-математические науки

ФИЗИКА

Э. Д. Газазян, Э. М. Лазнев

Разночастотное группирование электронных пучков

§ 1. Введение

Методы получения электронных пучков, сгруппированных в сгустки малой фазовой ширины, представляют несомненный интерес.

В первую очередь это связано с одной из актуальных проблем радиофизики—генерированием миллиметровых поли, где основной задачей явдяется обеспечение когерентного действия электронов.

Не менее интересно применение подобной системы в качестве предварительного группирователя в линейных ускорителях, что позволяет значительно увеличить интенсивность ускоренного пучка и уменьшить энергетический разброс на выходе ускорителя.

В настоящей работе, на основе кинематической теории, рассмотрены характеристики разночастотного группирователя, состоящего из авух резонаторов, возбуждвемых на частотах w_1 п kw_2 соответственно. Паказано, что подобная система может осуществить группирование в достаточно узкие спустки.

Гармонический анализ выходного тока группирователя, для рассмотренного в статье конкретного случая, показывает, что в нем содержатся весьма высокие гармоники (~800) основной частоты ∞₁.

§ 2. Группирование электронов

Группирователь состоит из двух резонаторов і и ІІ, возбуждаємых с частотами «, и ж», соответственно (фиг. 1). Эдектронный поток создается электронной пушкой Э. П.

Пусть электрон, обладающий начальной скоростью $v_{\rm o}$, влетает в резонаторы I и II в моменты времени $t_{\rm t}$ и $t_{\rm c}$. Тогда, в зазорах на него будут действовать поля

$$u_1 = U_1 \sin \omega_1 t_1,$$

 $u_2 = U_2 \sin k (\omega_1 t_2 + \hat{\gamma}_{12}),$
(2.1)

гле

 U_1 и U_2 —вмилитуды с. в. ч. поля в зазорах резонаторов, ψ_{12} —произвольный сдвиг фазы между полями I и II резонаторов. В дальнейшем мы будем пренебрегать взаимодействием электронов в пучке и счи-

тать поля в зазорах резонаторов однородными. Решив уравнения движения электронов, легко можно получить выражения для скоростей частиц v, и v, на выходе из I и II резонаторов в виде

$$v_{1} = v_{0} \left[1 + \alpha_{1} \frac{U_{1}}{2U_{0}} \sin \omega_{1} t_{1} \right],$$

$$v_{2} = v_{0} \left[1 + \alpha_{1} \frac{U_{1}}{2U_{0}} \sin \omega_{1} t_{1} + \frac{\alpha_{2}}{k} \frac{U_{2}}{2U_{0}} \left[\sin k \left(\omega_{1} t_{1} + \phi_{12} \right) \right],$$
(2.2)

где

ние углы пролета в зазорах 1 и II резонаторов; k > 1 — отношение частот I и II резонаторов.

Используя (2.2), можно записать углы пролета между I и II резонаторами θ_{12} и II резонатором и выходом из "группирователя θ_{22} , в следующем виде

$$\begin{split} \theta_{12} &= \frac{\omega_1 l_{12}}{\psi_1} = \theta_{12}^0 \left[1 - \alpha_1 \, \frac{U_1}{2U_0} \, \sin \omega_1 t_1 \, \right] \,, \\ \theta_{23} &= \frac{\omega_1 l_{23}}{\psi_2} = \theta_{23}^0 \left[1 - \alpha_1 \, \frac{U_1}{2U_0} \, \sin \omega_1 t_1 - \frac{\alpha_2}{k} \, \frac{U_2}{2U_0} \, \sin k \left(\omega_1 t_1 + \psi_{12} \right) \right] \,, \\ U_1 &\ll U_0, \ U_1 \ll U_0. \end{split}$$

Здесь обозначено

$$\theta_{12}^0 = \frac{\omega_1 l_{12}}{v_0} \ \text{if} \ \theta_{23}^0 = \frac{\omega_1 l_{23}}{v_0} \cdot$$

Фазовые углы, соответствующие моментам времени прибытия электронов во второй резонатор от с и выходу из группирователя от с определяются из следующих выражений

$$\begin{split} & \omega_{1}t_{2} = \omega_{1}t_{1} + \theta_{12} = \omega_{1}t_{1} + \theta_{12}^{0} - A_{12}\sin\omega_{1}t_{1}, \\ & \omega_{1}t_{2} = \omega_{1}t_{1} + \theta_{12} + \theta_{22} = \omega_{1}t_{1} + \theta_{13}^{0} - A_{12}\sin\omega_{1}t_{1} - \\ & - \frac{1}{k}A_{23}\sin k\left(\omega_{1}t_{1} + \varphi_{12} - A_{12}\sin\omega_{1}t_{1}\right). \end{split} \tag{2.4}$$

В (2.4) введены следующие обозначения

$$\theta_{13}^{0} = \theta_{12}^{0} + \theta_{23}^{0}, \quad A_{13} = \alpha_{1} - \frac{U_{1}}{2U_{0}} - \theta_{13}^{0}, \quad \varphi_{12} = \psi_{12} + \theta_{13},$$

$$A_{12} = a_1 \, \frac{U_1}{2 U_0} \, \theta_{12}^0, \quad A_{23} = a_2 \, \frac{U_2}{2 U_0} \, \theta_{23}^0.$$

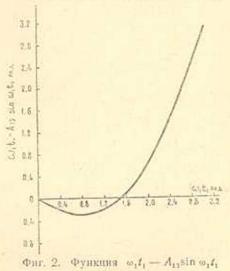
В формуле (2.4) θ_{13}^0 есть угол пролега пространства группирователя частицей, обладающей средней скоростью $v_{\rm o}$.

Фазовая ширина стустка Ф, сгруппированного около этой частицы на выходе из группирователя, будет равна

$$\Phi = \omega_1 t_3 - \psi_{13}^0 = \omega_1 t_1 - A_{13} \sin \omega_1 t_1 - \frac{1}{k} A_{23} \sin k \left(\omega_1 t_1 + \varphi_{12} - A_{12} \sin \omega_1 t_1 \right). \tag{2.5}$$

Легко видеть, что выражение $w_1t_1-A_{13}\sin w_1t_1$ аналогично уравнению, описывающему кинематический процесс группирования в слу-

чае одного резонатора с частотой и, [1]. Наличие второго члена в (2.5), при соответствующем выборе параметров, входящих в него, позволяет сделать величину Ф достаточно малой в интересующей нас области входных фаз. Действительно, как видно из фиг. 2, функция $\omega_1 t_1 - A_{13} \sin \omega_1 t_1$ при значениях $A_{13} > 1$ имеет минимум, величина которого и определяет разброс фаз на выходе группирователя. Полбирая соответствующим образом второй член, мы можем произвести компенсацию минимума этой кривой. "Выравичвание" производится на участке $0 < \omega, t_1 < x$, где x точка прохождения через нуль функции $\omega_1 t_1 - A_{13} \sin \omega_1 t_1$.



при $A_{12} = 1.5$.

При заданном значении x величина A_{13} определяется из соотношения

$$\frac{1}{A_{13}} = \frac{\sin x}{x} \tag{2.6}$$

Легко видеть, что для осуществления "выравнивания" необходимо. чтобы удовлетворялось условие

$$k\varphi_{1*} = (2m + 1)\pi, \quad m = 0, 1, 2, \cdots$$
 (2.7)

Учитывая (2.7), выражение (2.5) можем записать в виде

$$\Phi = \omega_1 t_1 - A_{13} \sin \omega_1 t_1 + \frac{A_{23}}{k} \sin k \left(\omega_1 t_1 - A_{12} \sin \omega_1 t_1 \right). \tag{2.8}$$

При условии

$$\Phi(x) = 0$$

А12 определяется из соотношения

 $k\left(x-A_{12}\sin x\right)=\pi$

или

$$A_{12} = \left(1 - \frac{\pi}{kx}\right) A_{12}.$$

В (2.9) должно удовлетворяться условие

$$k > \frac{\pi}{x}$$
 (2.10)

(2.9)

При известных k, A_{12} и x максимум функции $\sin k \left(\omega_1 t_1 - A_{12} \sin \omega_1 t_1 \right)$ будет в точке 3, определяемой из условия

$$k(\beta - A_{12} \sin \beta) = \frac{\pi}{2}$$
 (2.11)

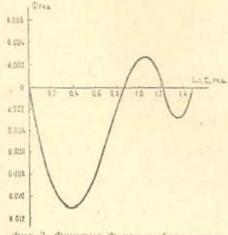
или

$$\frac{\sin\beta}{\beta} = \left(1 - \frac{\pi}{2k\beta}\right) \frac{1}{A_{12}} \cdot$$

Тогда из условия $\Phi(\beta) = 0$ можно определить A_{zz} как

$$A_{13} = \beta k \left(A_{13} \frac{\sin \beta}{\beta} - 1 \right). \tag{2.12}$$

Как видно из сказанного выше, задав область захвата x, мы можем определить величины, входящие в выражение (2.8) и произвести полный расчет подобного группирователя.



Фиг. 3. Функция Ф при выборе параметров x = 1.5, $A_{12} = 1.5$, k = 3, $A_{12} = 0.450$, $A_{23} = 0.830$,

На фиг. З приведена зависимость выходной фазы Φ от вхолной фазы $\omega_1 t_1$ для случая x=1,5 рад.

Группирующие характеристики можно оценить с помощью фиг. З. а также из уравнения непрерывности [2].

$$i_{\text{BL}} d(\omega_1 t_1) = i_{\text{BBL}} d\Phi,$$
 (2.13)

rie

і_{вт.} — ток на входе в группирователь,

і_{вых.}—ток на выходе из группирователя.

Входной ток $I_{\rm ex}$ в течение периода высокой частоты T_1 можно считать постоянным в силу того, что длительность пакетов электро-

нов, формируемых электронной пушкой, гораздо больше T_1 . Из общего числа электронов N_0 , инжектированных электронной пушкой за период высокой частоты, ΔN электронов группируются в сгустки, обладающие фазовой шириной 2Φ .

Так как

$$\frac{\Delta N}{N_0} = \frac{x}{\pi},$$

то для случая, приведенного на фиг. 3, в области фаз $2\Phi=0.022~pad$ группируются $48^{\rm o}/_{\rm e}$ частиц от общего числа $N_{\rm o}$.

§ 3. Выходной ток группирователя.

Представим выходной ток группирователя в виде разложения в ряд Фурье

$$i_{max} = i_0 + \sum_{n=1}^{\infty} [a_n \sin n\Phi + b_n \cos n\Phi] = \sum_{n=0}^{\infty} I_n \cos (n\Phi - \delta),$$
 (3.1)

где

$$a_n = \frac{1}{2\pi} \int_0^{2\pi} i_{\text{max.}} d\Phi = I_0 \cos \delta,$$

$$a_n = \frac{1}{\pi} \int_0^{2\pi} i_{\text{max.}} \sin n\Phi d\Phi = I_n \sin \delta,$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} i_{\text{max.}} \cos n\Phi d\Phi = I_n \cos \delta.$$

Используя уравнения непрерывности (2.13), можно записать амплитуды гармоник I_a в виде

$$\left[\frac{\pi I_n}{I_{\text{mx}_i}}\right]^2 = \left[2\int_0^x \cos n\Phi d\left(\omega_1 t_1\right)\right]^2 + \left[2\int_0^x \sin n\Phi d\left(\omega_1 t_1\right)\right]^2. \tag{3.2}$$

Зависимость Φ от $\omega_1 t_1$ дается выражением (2.8), так что задача сводится к определению интегралов (3.2). Однако, вследствие громоздкости непосредственного решения, имеет смысл заменить (2.8) аппроксимированной для каждого конкретного случая зависимостью. Для случая, приведенного на фиг. 3, кривую Φ ($\omega_1 t_1$) можно аппроксимировать на участке $0 < \omega_1 t_1 < 1,5$ рад по частям следующими тремя функциями

$$\Phi \approx -0.011 \sin 3.62 \, \omega_1 t_1$$
 прв $0 \leqslant \omega_1 t_1 \leqslant 0.87$,
 $\Phi \approx 0.003 \sin 8.74 \, (\omega_1 t_1 - 0.87)$ прв $0.87 \leqslant \omega_1 t_1 \leqslant 1.23$, (3.3)
 $\Phi \approx -0.003 \sin 11.6 \, (\omega_1 t_1 - 1.23)$ прв $1.23 \leqslant \omega_1 t_1 \leqslant 1.5$.

Подставив (3.3) в (3.2) и пренебрегая членами второго порядка, получим

¹² Известия АН, серия физ.-мат. наук, № 2

$$\left[\frac{\pi I_n}{i_{\text{ax.}}}\right]^2 = [1,74J_0(0.011n)]^2 + [0,72J_0(0.003n)]^2 + [0,54J_0(0.003n)]^2 + \\ + 0.896 [J_0(0.003n)]^2 + 4.314J_0(0.011n)J_0(0.003n), \quad (3.4)$$

 J_0 — функция Бесселя первого рода.

Для больших п

$$\frac{I_n}{I_{nx}} \sim J_0(0.003n),$$
 (3.5)

откуда следует, что

$$n = \frac{2,4048}{0.003} \approx 801,$$
 (3.6)

где 2,4048—первый корень J_0 .

Рассмотренный случай не связан с какой-либо физической задачей и приведен лишь в качестве иллюстрации. В зависимости от конкретных требований необходимо рассмотреть несколько вариантов и выбрать оптимальный. Полученные в работе формулы дают возможность произвести полный расчет разночастотного группирователя.

Физический институт АН Армянской ССР

Поступияв 21 XI 1961

է. Դ. Գազագյան. է. Մ. Լագիև

ԷԼԵԿՏՐՈՆԱՅԻՆ ՓՆՋԻ ԽՄԲԱՎՈՐՈՒՄԸ ՏԱՐԲԵՐ ՀԱՃԱԽԱԿԱՆՈՒԹՅՈՒՆՆԵՐՈՎ ԱՇԽԱՏՈՂ ԵՐԿՈՒ ՌԵԶՈՆԱՏՈՐՆԵՐԻՑ ԲԱՂԿԱՑԱԾ ԽՄԲԱՎՈՐԻՉԻ ՄԵՋ

UUTONONDE

Աշխատության մեջ դիտարկված են տարբեր՝ այ և էայ հաճախականաթյուններով աշխատող երկու ռեզոնատորներից բաղկացած իմերավորիչի խաբակտերիստիկները կինեժատիկական տեսության հիման վրա։ Լուժված են Էլեկտրոնի շարժման հավաստրումները այդպիսի սիստնմում այն դեպքի համար, երբ արհամարհվում է էլեկտրոնների փոխաղդեցությունը։

Ստացված է արտահալտություն ևլթի ֆազի չամար՝

$$\Phi = \mathbf{w_1} t_1 - A_{13} \sin \mathbf{w_1} t_1 - \frac{A_{23}}{k} \sin k \left(\mathbf{w_1} t_1 + \varphi_{12} - A_{12} \sin \mathbf{w_1} t_1 \right) \mathbf{e}^{-\frac{1}{2}}$$

Դա իրենից ներկալացնում է մեկ ռեղոնատորային խմբավորիչի անալոգը և մի լրացուցիչ անդամ, որը պալմանավորված է հրկու ռեղոնատորների փոխաղդեցությունը

8ույց է տրված, որ կամալական պարաժետրների ծարմար ընտրութկան միջոցով կարելի է ծամեկ Փ-ի մինիմալ արժերի մուտքի ֆադայի՝ մեզ ծետաքրքրող ինտերվալում։ Տվյալ աշխատության մեջ ելքի ֆազային ցրման Տամար ստացվում է, որ $\Delta \Phi = -0.022$ pad այն դեպքում, երբ խմրավորվում են սկզբնական Էլեկարոնների $48\%_{\rm s}$ -ը։

Հարմոնիկ անալիզի միջոցով ցույց է արված, որ էլևկտրոնային հուսանքը պարունակում է հիմնական (ω_1) հաճախականության միանդամայն բարձր հարմոնիկներ (< 800):

ЛИТЕРАТУРА

- 1. Клистроны. Перевод с английского, "Советское Радио", М., 1952.
- 2. Миллиметровые и субмяллиметровые полны. Сборник переволов. И. Л., М., 1959.