203400405 006 9-6506-63065566 0409-607-6036 559,640966 ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

Зуфич-dupbdum, филирупійй» XV, № 1, 1962 Физико-математические науки

ФИЗИКА

А. Г. Акритов, П. А. Безирганян

Отражающая площадь кристалл-анализатора при точечном источнике рентгеновских лучей

В связи с развитием микрофокусной рентгеновской спектроскопии важное значение приобретает определение вида отражающей части кристалл-анализатора рентгеновских лучей при точечном источнике-

В работе [1] экспериментально и теоретически (приближенно) определен вид отражающей части изогнутого кристалл-анализотора при точечном источнике рентгеновских лучей. Экспериментальный вид этой площадки по [1] приведен на фиг. 1.

Фиг. 1.

В вастоящей работе теоретически определяются вид и размеры огражающей части изогнутого и илоского кристалл-анализаторов при точечном источнике рентгеновских лучей в самом общем случае размеров действующих частей кристалл-анализаторов.

§ 1. Изогнутый кристалл

Определим вид действующей части изогнутого кристалл-анализатора при точечном источнике рентгеновских лучей. Пусть кристаллическая властинка изогнута по цилиндру с внутренним радиусом R, круговым сечением которого является окружность DF (фиг. 2). Начало коорлинат поместим на оси этого цилиндра, а координатные оси направни так, как показано на фиг. 2. Допустим точечный источник монохроматических рентгеновских лучей помещен на фокальной окружности *DBO* в точке $B(x_0, y_0, 0)$. Фокальная окружность и круговое сечение кристалаа касаются в точке D плоскости *XOY*.

Пусть луч BA под углом в падает в точку A(x, y, z) цилинарической поверхности кристалла, где θ — угол Вульфа-Брегга. Найдем геометрическое место точек, в которых лучи, выходящие из точечного источника B, падают на изогнутую кристаллическую поА. Г. Акритов, П. А. Безирганян

верхность под углом 0. Угол между лучом ВА и нормалью точки А определится из выражения

$$\sin \theta = \frac{\vec{AB} \cdot \vec{BC}}{|\vec{AB}| \cdot |\vec{AC}|} = \frac{X_1 X_2 + Y_1 Y_2 + Z_1 Z_2}{\sqrt{X_1^2 + Y_1^2 + Z_1^2} \cdot \sqrt{X_2^2 + Y_2^2 + Z_2^2}},$$

где X_1 , Y_1 , Z_1 , X_2 , Y_2 и Z_2 — составляющие векторов \vec{AB} и \vec{AC} со ответственно.

После некоторых простых преобразований для г координат точе поверхности изогнутого кристалл-анализатора, удовлетворяющих ус

где

ловню Вульфа-Брегга, получим

 $z = \pm |a - b\sin(a + \theta)|, \quad (1.1)$

 $a = R \operatorname{ctg} \theta \cos \theta, \quad b = R \operatorname{ctg} \theta,$

 α — угол между осью X и проекцие вектора \overrightarrow{OA} на плоскость XOY.

Не трудно убедиться в том, чт (1.1) (т. е. геометрическое место точе поверхности изогнутого кристалл-анали затора, участвующих в отражении пр точечном источнике) представляет собо двя изогнутых эллипса с общими вер шинами в точках D и C'. Действительно из (1.1) видно, что г принимает нуло

вые значения при $\alpha = \alpha_1 = \frac{\pi}{2}$ (в точк

D) и $a = a_2 = \frac{\pi}{2} - 20$ (в точке C').

Максимальные значения найдем из (1.1) с помощью условий

$$z_{1\max} = \pm (a-b)$$
 при $a = \frac{a}{2} - \theta$,
 $z_{2\max} = \pm (a+b)$ при $a = \frac{3\pi}{2} - \theta$.

На фигуре 3 показано круговое сечение изогнутого по цилиндр кристалл-анализатора и фокальная окружность. Там же показан места, где z принимает нулевые и максимальные значения. На фи гуре 4 показано геометрическое место точек изогнутого кристалл участвующих в отражении при точечном источнике (на развернуто цилиндрической поверхности). Как видно, геометрическое место эти точек состоит из двух эллипсов с общими вершинами в точках D C'. Размеры этих эллипсов различны. При продвижении источнии по фокальной окружности размеры одного из эл. ипсов (расположе ного в сторону движения) уменьшаются, а размеры другого-увел

104

Отражающая площадь кристалл-анализатора

чиваются. Малые полуоси этих эллипсов представляют собой максимальные значения 2 т. е.

Фнг. З.

 $z_{1\max} = R \operatorname{ctg} \theta (\cos \theta - 1), \qquad z_{2\max} = R \operatorname{ctg} \theta (\cos \theta + 1).$

Большие полуоси определяются следующим образом. Для малого эллипса, когда а меняется от $\frac{\pi}{2} - 2\theta$ до $\frac{\pi}{2} - \theta$, *z* меняется от нуля до $z_{1\max}$, следовательно, большая полуось малого эллипса будет $a_1 = R\theta$, где θ — в радианах. Для большого эллипса, когда *z* меняется от $\frac{\pi}{2}$ до $\frac{3}{2}\pi - \theta$, *z* меняется от нуля до $z_{2\max}$, следовательно, большая полуось большого эллипса будет $a_2 = R(\pi - \theta)$.

Ясно, что в действительности эти эллипсы целиком не помещаются на поверхности кристалл-анализатора, так как анализаторы обычно имеют размеры порядка двух-трех сантиметров. Следовательно, только пезначительные части (окрестность точки D, фиг. 4) помещаются на поверхности анализатора. Окрестность точки D имеет форму крестика, поэтому в эксперименте рентгеновские снимки действующих площалей анализаторов получаются в виде снимков, показанных на фиг. 1.

Если иметь в виду и то, что источники рентгеновских лучей в действительности не точечные, а микрофокусные, то будет ясна причива расширения этих крестиков.

§ 2. Плоский кристалл

Теперь определим вид действующей части плоского кристалла при точечном источнике рентгеновских лучей.

Пусть точечный источник рентгеновских монохроматических лучей расположен в точке $A(x_0, y_0, z_0)$, а отражающая поверхность плоского кристалл-анализатора совпадает с плоскостью XOY (фиг. 5). Допустим луч AB из точечного источника A под углом θ падает в точку B(x, y, 0) поверхности кристалла.

Для sin 0 получим

А. Г. Акритов, П. А. Безирганян

$$\sin \theta = \frac{z_0}{V(x - x_0)^2 + (y - y_0)^2 + z_0^2}$$

откуда

$$(x - x_0)^2 + (y - y_0)^2 = z_0^2 \operatorname{ctg}^2 \theta.$$
 (6)

Угол в должен удовлетворять условню Вульфа-Брегга.

Таким образом, действующая (отражающая) часть плоского к сталл-анализатора при точечном источнике представляет собой окруность с центром в точке $O'(x_0, y_0, 0)$, где x_0 и y_0 первые две код динаты $A(x_0, y_0, z_0)$ источника. Радиус этой окружности, как вид чаз (2.1), равен $R = z_0 \operatorname{ctg} \theta$, где z_0 — третья координата точки исто-

Фиг. 5.

ника. В случае реальных плоских кристалл-анализаторов, размерь которых порядка двух-трех сантиметров, на поверхности анализатор помещается только небольшая часть дуги в окрестности точки D.

§ 3. Выводы

 Действующая площадь изогнутого кристалл-анализатора пр точечном источнике представляет собой две эллиптические дуги общей вершиной (см. фиг. 4).

 В общем случае кривизны этих дуг различны (размеры эл липсов различны) и зависят от угла Вульфа-Брегга и от радиуса вз гиба кристалл-анализатора.

 Действующая площадь плоского кристалл-анализатора пр точечном источнике представляет собой дугу окружности.

 Радиус этой окружности зависит от угла Вульфа-Брегга и с расстояния между точечным источником и плоским кристалл-аналя затором.

Армянский сельскохозяйственный институт Ереванский государственный университет

Поступила 23 111 196

106

U. 9. Uhrhand, 9. 2. Abahrqubjub

ԲՅՈՒՐԵՂ-ԱՆԱԼԻԶԱՏՈՐԻ ԱՆԴՐԱԴԱՐՁՆՈՂ ՄԱԿԵՐԵՍԸ ՌԵՆՏԳԵՆՅԱՆ ՃԱՌԱԳԱՅԹՆԵՐԻ ԿԵՏԱՅԻՆ ԱՂԲՅՈՒՐԻ ԴԵՊՔՈՒՄ

ԱՄՓՈՓՈՒՄ

Հոդվածում ճնտաղոտվում է ռենտգենլան ճառադալինների բյուրեղային անալիդատորի անդրադարձման վիճակում դտնվող մասը՝ կետալին աղբլուրի դեպրում։

Հետաղոտուխլունների հիման վրա արվում են հետևյալ եղրակացուբյունները.

1. Ճկված բլուրեղ-անալիդատորի գործող մասը կետային աղբյուրի դեպքում իրենից ներկալացնում է ընդհանուր դադախով երկու էլիպսական աղեղներ (ֆիդ. 4)։

2. Ընդճանառը դեպքում այդ աղեղների կորությունները տարրեր են (էլիպմների չափերը տարրեր են) և կախված են Վուլֆ-Բրեդի անկլունից և բլուրեղ-անալիդատորի ճկման շատավղից։

3. Հարխ բյուրեղ-անալիդատորի դործող մասը կետալին աղբյուրի դեպբամ իրենից ներկայացնում է շրջանադծի աղեղ։

4. Այդ շրջանադծի շառավիդը կախված է Վուլֆ-Բրեգի անկյունից և հային աղբյուրի ու նարի բյուրնդ-անալիդատորի միջև ևդած ճեռավորուբյունից։

Ստացված արդլուն ընհրը շատ լավ բացատրում են փորձերից չալտնի ովյալները։

ЛИТЕРАТУРА

Ваяман С. А. Отражение рентгеновского излучения от изотнутого кристалла при микрофокусном источнике, Известия АН СССР, серия физическая, 24, № 4, 1960.