ДИЗЧИЧИК ПИП ЧРЅПРРЗПРИКЕР ИЧИЧЕГРИЗЕ БЕДЕЧИЧЕР ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЯ ССР

Эраруш-бирьбиш. артагрупіббьг XIV, № 5, 1961 Физико-математические науки

НАУЧНЫЕ ЗАМЕТКИ

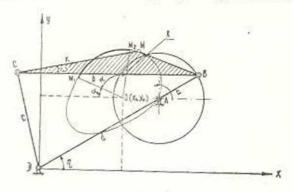
М. Б. Эдилян

Применение электронно-вычислительных машин для синтеза несимметричного направляющего механизма

Определение параметров несимметричного шарнирно-четырехзвенного механизма

Механизмы с остановкой некоторой продолжительности в заданном положении ведомого звена представляют собой значительную группу исполнительных механизмов машин автоматов. Для обеспечения приближенного выстоя используют зубчато-рычажные и шариирные механизмы. Шарнирные механизмы просты по конструкции, дешевы и, вследствие отсутствия высших пар, надежны в работе. Вышеуказанные достоинства последних говорят в пользу внедрения шарнирных механизмов в промышленность с целью обеспеченяя приближенного выстоя.

П. Л. Чебышевым [3] разработана теория симметричного кругового-направляющего механизма и получены формулы для определения его параметров. Однако, столь ценная с научной точки зрения эта работа П. Л. Чебышева не нашла практического применения из-за того, что не были определены границы выбора свободных параметров механизма, при котором получаются действительные решения. Проблема, указанная П. Л. Чебышевым доведена до инженерного решения в работе Л. С. Гродзенской [5].


Н. И. Левитским разработана общая теория синтеза приближенных механизмов [1], [2].

Синтез несимметричных механизмов представляет собой более общую задачу. Области существования свободных параметров механизма в общем случае будут более развернутыми. Кроме того, при решении задач синтеза симметричных механизмов часто звенья последних получаются неконструктивными. Наконец, данный вопрос актуален тем, что выявляет возможность применения электронно-вычислительных машин для задач синтеза механизмов. Последнее открывает практически безграничные возможности для проектирования самых разпообразных механизмов, воспроизводящих выстой любой продолжительности и отвечающих самым разнообразным требованиям. Изменением и широкой вариацией входных параметров можно спроектировать механизмы для получения различных кривых. Разработка

методики и программирования задач синтеза несимметричного механизма с остановкой и составляет предмет настоящей статьи. В общем случае задача синтеза направляющих четырехзвенников формулируется следующим образом.

Задана некоторая плоская кривая $y=f_1(x)$ своим уравнением или таблицей значений координат x и y. Определить размеры и положение шарнирного четырехзвенника, на шатуне которого имеется точка M, описывающая шатунную кривую $y=f_2(x)$, мало отличающуюся от заданной кривой на некотором участке или на всем своем протяжении.

В данной работе рассматривается случай, когда заданная плоская кривая является дугой окружности (фиг. 1). За исходные параметры приняты: CM = k, DC = c, радиуе окружности приближения R,

фиг. 1.

координаты центра окружности приближения $O(x_0, y_0)$, центральный угол дуги приближения α и $\angle \alpha_0$, фиксирующий положение дуги приближения относительно оси X—итого семь параметров.

Подлежат определению следующие величины: AB = a, BC = b, AD = d, $\angle BCM = \omega$ и угол наклона стойки η —итого пять параметров-

Задача о воспроизведении заданной траектории при помощи шарнярного механизма может быть сведена к задаче о нахождении искомых параметров из условия малого отклонения от нуля взвещенной разности Δq .

Аналитическое выражение взвещенной разности Δq при $x_D=0$ $y_D=0$ имеет следующий вид:

$$\Delta q = -\frac{b\cos\omega}{k} (\rho^{2} - k^{2} - c^{2}) - \frac{b\sin\omega}{k} U + \frac{db\sin(\omega + \eta)}{k} (Vx + Wy) + \frac{db\cos(\omega + \eta)}{k} (Wx - Vy) - d\sin\eta (Vx + Wy - 2y) - (1.1) - d\cos\eta (Wx - Vy - 2x) - c^{2} - b^{2} - d^{2} + a^{2}.$$

Для вычисления пяти параметров (a, b, d, ω, η) сгруппируем члены в выражении взвещенной разности (1.1) так, чтобы оно имело вид следующей функции

$$\Delta q = p_0 f_0(x) + p_1 f_1(x) + \dots + p_6 f_6(x), \tag{1.2}$$

гле

 $f_i(x)$ — функции переменного аргумента x, не содержащие неизвестных параметров,

 p_i — коэффициенты, зависящие от искомых параметров.

$$f_{0}(x) = k^{2} + c^{2} - \rho^{2}, \qquad p_{0} = \frac{b\cos\omega}{k},$$

$$f_{1}(x) = -U, \qquad p_{1} = \frac{b\sin\omega}{k},$$

$$f_{2}(x) = 2y - Vx - Wy, \qquad p_{2} = d\sin\eta,$$

$$f_{3}(x) = 2x + Vy - Wx, \qquad p_{3} = d\cos\eta,$$

$$f_{4}(x) = 1, \qquad p_{4} = a^{2} - c^{2} - b^{2} - d^{2},$$

$$f_{5}(x) = -Vx - Wy, \qquad p_{5} = -p_{0}p_{2} - p_{1}p_{3}, \qquad (1.3)$$

$$f_{6}(x) = Vy - Wx, \qquad p_{6} = p_{1}p_{2} - p_{0}p_{3},$$

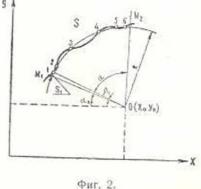
$$p^{2} = x^{2} + y^{2},$$

$$U = \pm \sqrt{4k^{3}\rho^{2} - (\rho^{2} + k^{2} - c^{2})^{2}},$$

$$V = \frac{U}{\rho^{2}}, \qquad W = \frac{\rho^{2} + k^{2} - c^{2}}{\rho^{2}}.$$

Узлы интерполирования рекомендуется располагать в соответствии с расположением нулей полинома Чебышева, т. е. по ф-ле, которая для рассматриваемого случая принимает вид

$$S_i = 0.5 \left(1 - \cos \frac{2i - 1}{2n} \pi \right) S_i$$
 (1.4)


где n = 6 -число узлов интерполирования,

S_i — длина дуги графика заданной функции, измеряемая от начала участка приближения до i-го узла

интерполирования, S — длина дуги графика заданной функции на участке приближения

(фиг. 2).

Совпадение шатунной кривой с заданной окружностью можно ожидать максимум в 6 точках. Пять параметров механизма определяются из условия равенства нулю выражений типа взвешенной разности (1.2), написанных для пяти узлов интерполирования.

Знак перед радикалом U выбирается в зависимости от того, какая из двух ветвей шатунной кривой должна быть приближена к заданной траектории.

Центральные углы соответствующих дуг S_i для шести узлов интерполирования будут равны

$$\beta_i = a_i \alpha \qquad i = 1, 2 \cdots 6, \tag{1.5}$$

где

$$a_1 = 0.0170371;$$
 $a_2 = 0.1464466;$ $a_3 = 0.3705905;$ $a_4 = 0.6294095;$ $a_5 = 0.8535534;$ $a_6 = 0.9829629.$

Координаты узлов интерполирования связаны с координатами центра и раднусом окружности приближения следующим образом

$$x_i = x_0 - R\cos(\alpha_i x + \alpha_0),$$

 $y_i = y_0 + R\sin(\alpha_i x + \alpha_0),$ $i = 1, 2, \dots 5.$ (1.6)

Подсчитывая функции $f_i(x)$ по (1.3), мы получаем следующую систему уравнений для определения пяти параметров механизма (a, b, d, ω, η)

$$\Delta q_i = p_0 f_{0i}(x) + p_1 f_{1i}(x) + p_2 f_2(x) + \dots + p_d f_{0i}(x) = 0.$$

$$(1.7)$$

Система уравнений (1.7), путем последовательного исключения p_4 , p_5 , p_6 , p_2 , p_3 , приводится к виду

$$p_{3} = k_{3}p_{1} + k_{2}p_{6},$$

$$p_{2} = k_{3}p_{1} + k_{4}p_{6},$$

$$p_{6} = k_{5}p_{1} + k_{6}p_{6},$$

$$p_{5} = k_{7}p_{1} + k_{8}p_{6},$$

$$p_{4} = k_{5}p_{1} + k_{10}p_{6}.$$
(1.8)

Зависимости (1.8) при обозначении $\frac{p_1}{p_0} = \xi$ приводятся к кубическому уравнению относительно ξ

$$A_1\xi^3 + A_2\xi^2 + A_3\xi + A_4 = 0,$$
 (1.9)

где

$$\begin{split} A_1 &= k_5 k_1 + k_3 k_7, \quad A_2 = (k_2 + k_3) \, k_5 + (k_4 - k_1) \, k_7 + k_6 k_1 + k_8 k_3, \\ A_3 &= (k_2 + k_3) \, k_6 + (k_5 + k_8) \, k_4 - k_8 k_1 - k_7 k_2, \quad A_4 = k_4 k_6 - k_2 k_8. \end{split} \tag{1.9'}$$

После определения \mathfrak{t}_i параметры p_i выражаются следующими зависимостями

$$p_{3} = -\frac{k_{5}\xi + k_{6} + (k_{5}\xi + k_{8})\xi}{1 + \xi^{2}},$$

$$p_{2} = \frac{-k_{7}\xi - k_{8} + (k_{5}\xi + k_{6})\xi}{1 + \xi^{2}},$$

$$p_{1} = \frac{k_{4}p_{3} - k_{2}p_{2}}{k_{1}k_{4} - k_{3}k_{2}}, \qquad p_{0} = \frac{k_{1}p_{2} - k_{3}p_{3}}{k_{1}k_{4} - k_{3}k_{2}},$$

$$p_{6} = k_{5}p_{1} + k_{6}p_{0}, \quad p_{5} = k_{7}p_{1} + k_{8}p_{0}, \quad p_{4} = k_{9}p_{1} + k_{10}p_{0},$$

$$(1.10)$$

Отыскиваемые параметры a, b, d, ω, η будут соответственно равны

$$b = k \sqrt{p_0^2 + p_1^2}$$
, $d = \sqrt{p_2^2 + p_3^2}$, $a = \sqrt{c^2 + b^2 + d^2 - p_4}$.
 $w = \arccos p_0 \frac{k}{b}$, $\eta = \arcsin \frac{p_2}{d}$. (1.11)

Полученные параметры p_j необходимо подставить в исходные уравнения Δq_i (1.7) и проверить условия

•
$$\Delta q_i = 0$$
 $i = 1, 2, \dots 5.$ (1.12)

После получения параметров механизма (a, b, d, ω, η) следует также проверить

1) условие проворачиваемости кривошипа

$$a + d \le b + c, \tag{1.13}$$

2) условие обеспечения минимального угла передачи

$$\cos\psi_{\min} = \left| \frac{b^2 + c^2 - (d \pm a)^2}{2bc} \right|. \tag{1.14}$$

при предварительно заданной величине фин.

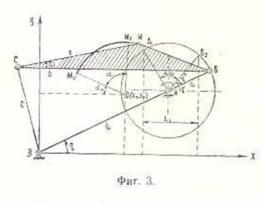
3) конструктивную приемлемость соотношений длин звеньев ме-

ханизма
$$\frac{d}{a}$$
 н $\frac{c}{a}$. (1.15)

желательные значения которых заранее оговариваются

$$m_1 \leqslant \frac{d}{a} \leqslant m_2, \qquad n_1 \leqslant \frac{c}{a} \leqslant n_2.$$

§ 2. Определение отклонений шатунной кривой от дуги окружности


Примем, что точки M_1 и M_2 лежат на данной окружности (фиг. 2). Тогда для координат этих точек можно написать

$$x_1 = x_0 - R\cos x_0$$
 $x_2 = x_0 - R\cos (x_0 + x_0),$
 $y_1 = y_0 + R\sin x_0,$ $y_2 = y_0 + R\sin (x_0 + x_0).$ (2.1)

Используя реккурентные соотношения между координатами точек шатунной кривой и кривощипа, мы можем написать (фиг. 3)

$$\begin{split} x_{B_i} &= x_i + \frac{V_i Q_i + W_i T_i}{2k} \,, \\ y_{B_i} &= y_i + \frac{V_i T_i - W_i Q_i}{2k} \quad i = 1, 2, \end{split} \tag{2.2}$$

$$\begin{split} V_{i} &= \frac{\pm \sqrt{4k^{2}\rho_{i}^{2} - (\rho_{i}^{2} + k^{2} - c^{2})^{2}}}{\rho_{i}^{2}} \quad , \\ W_{i} &= \frac{\rho_{i}^{2} + k^{2} - c^{2}}{\rho_{i}^{2}} \quad , \\ Q_{i} &= x_{i}b\sin\omega - y_{i} \langle b\cos\omega - k \rangle, \\ T_{i} &= y_{i}b\sin\omega + x_{i} \langle b\cos\omega - k \rangle, \\ \rho_{i}^{2} &= x_{i}^{2} + y_{i}^{2}. \end{split} \tag{2.3}$$

Отрезок между абсциссами точек B_2 в B_1 обозначим через L_1 , т. е.

$$x_{B_2} - x_{B_1} = L_1.$$
 (2.4)

Разделив отрезок L_1 на некоторое n число частей, для текущей точки B_i будем иметь

$$x_{B_i} = x_{B_i} + \frac{L_1}{n} i \quad i = 0, 1, 2 \cdots n.$$
(2.5)

Из фиг. З видно, что

$$y_{B_i} = d\sin\eta + V \overline{a^2 - (d\cos\eta - x_{B_i})^2}$$
 (2.6)

Имея i различных значений абсцисс x_{B_i} (ординат y_{B_i}), используя реккурентные соотношения между координатами точек M и B, можем вычислить значения координат точек шатунной кривой

$$\begin{aligned} x^{i} &= x_{B_{i}} + \frac{V_{B_{i}}Q_{B_{i}} + W_{B_{i}}T_{B_{i}}}{2b}, \\ y^{i} &= y_{B_{i}} + \frac{V_{B_{i}}T_{B_{i}} - W_{B_{i}}Q_{B_{i}}}{2b}, \end{aligned} \tag{2.7}$$

где

$$\begin{split} V_{B_{i}} &= \frac{\pm \sqrt{4b^{2}\rho_{B_{i}}^{2} - (\rho_{B_{i}}^{2} + b^{2} - c^{2})^{2}}^{**}}{\rho_{B_{i}}}, \\ W_{B_{i}} &= \frac{\rho_{B_{i}}^{2} + b^{2} - c^{2}}{\rho_{B_{i}}^{2}}, \end{split}$$

^{*} Знак V, совпадет со знаком V в (1.3).

^{**} Знак V_{B_1} совпадает со знаком V в (1.3).

$$\begin{split} Q_{B_{i}} &= -x_{B_{i}} k \sin \omega - y_{B_{i}} (k \cos \omega - b), \\ T_{B_{i}} &= -y_{B_{i}} k \sin \omega + x_{B_{i}} (k \cos \omega - b), \\ p_{B_{i}}^{2} &= x_{B_{i}}^{2} + y_{B_{i}}^{2}. \end{split} \tag{2.8}$$

Определив значения координат точек шатунной кривой, найдем отклонения между шатунной кривой и окружностью на дуге приближения по следующей формуле

$$\Delta_n^i = R - \sqrt{(x^i - x_0)^2 + (y^i - y_0)^2}, \qquad (2.9)$$

тде x_0 , y_0 , R—координаты центра и радиус окружности приближения, Δ_n^i — отклонение по нормали между шатунной кривой и окружностью на дуге приближения.

Необходимо определить также значение угла поворота звена AB = a, соответствующего углу выстоя α .

Расстояние между точками B_2 и B_1 равно

$$l = \sqrt{(x_{B_1} - x_{B_1})^2 + (y_{B_1} - y_{B_1})^2}$$
 (2.10)

H

$$a_{k\rho} = 2\arcsin\frac{l}{2a} {2arc} {2.11}$$

Сориентируем данный угол $\alpha_{\mathbf{x}\rho}$ с нулевым положением механизма. Согласно фиг. 3, если $x_{R} > d\cos\eta$, то

$$\gamma = \arccos \frac{x_{B_s} - d\cos \eta}{a} \qquad (2.12)$$

PI

$$\gamma_0=\gamma-\gamma.$$

Если $x_{B_i} < d\cos\eta$, тогда

$$\gamma = 180^{\circ} - \arccos \frac{d\cos \eta - x_{B_t}}{a} \tag{2.13}$$

Н

$$\gamma_0 = \gamma - \eta$$
.

На основании построенного алгоритма Вычислительным центром Академии наук Армянской ССР составлена программа и выполнены вычисления на автоматической цифровой электронной вычислительной машине*. Просчитано свыше 500 различных механизмов.

Механизмы не удовлетворяющие условиям (1.13), (1.14), (1.15) отбраковываются. В (1.14) величина угла $\psi_{\min} = 20^{\circ}$. В (1.15) величины

Автор считает своим приятным долгом выразить искреннюю благодарность зав. сектором программирования ВЦ Академии наук АрмССР кандидату физико-математических маук Т. М. Тер-Микаеляну и сотрудникам ВЦ Х. К. Брутяну Г. А. Саркисяну.

 $m_1 = n_1 = 1.5$, $m_2 = n_2 = 8$. Отклонения просчитываются для 50 точек, т. е. в (2.5) n = 50.

Для иллюстрации, из отобранных механизмов приведены некоторые, наиболее характерные.

В таблицах № 1 и № 2 приведены параметры и отклонения 2-х различных механизмов.

Входиые параметры		Отыскиваемые параметры		
R	1,309523 1,909523	b	3,373337 4,005557	
ĸ	3,363491 3,363491	d	2,395603 2,784047	
c	2,199999 2,199999	а	1,304320 1,456320	
40	0,287979 0,462511	(a)	0,0035526 0,2304035	
æ	1,169370 1,343903	η	0,8452596 0,6432647	
X_{q}	1,5793650			
y.	1,7936507			

Отклонение взвешенной разности Δ_{q} в 5 узлах интерполирования					
		$10^{-4} \cdot 0.240803$ $10^{-7} \cdot 0.596046$	Y.		

Проектирование присоединенной диады к основному направляющему механизму не входит в содержание данной статьи.

Присоединяемая группа проектируется по условию нестеснимости и с учетом угла передачи [6].

Մ. **6.** Էդերան

ՈՒՂՂՈՐԴ ՄԵՔԵՆԱՆԵՐԻ ՍԻՆՔԵԶԸ ԷԼԵԿՏՐՈՆԱՅԻՆ ՀԱՇՎԻԶ ՄԵՔԵՆԱՆԵՐԻ ՄԻՋՈՑՈՎ

UUTONONHU

Մև ըննա-ավտոմատներում որոշակի խումբ ևն կազմում այն մեխանիզմները, որոնց տարվող աշխատանջալին օղակը աշխատում է կանխատեսված կանգնումներով։

Նման նպատակների համար կիրառվում են ատամնավոր-լծակային և հոդավոր մեկսանիզմներ։ Հոդավոր մեխանիզմները կառուցվածքով պարզ են, էժան և բարձր գուլգերի բացակալության պատճառով հուսալի են աշխատանքում։

Վերոնիշլալ առավելությունները ճնարավոր են դարձնում հոդավոր մե-

լանիդմների լայն կիրառումը արդյունարկրության մեջ։

Էլնկարոնալին հաշվիչ ժերհնաննրի կիրառուժը նժան ժեխանիզժների հաշվարկներուժ դործնականորեն անսահժան հնարավորություններ է ստեղծուժ րազժաղան ժեխանիզժների հաշվարկն ու նախագծուժը ճշանլու և արագացնելու հաժար։

Հոգվածի հիմնական նպատակն է վերոհիշլալ մեկսանիզմների նախագծման և էլնկարոնային հաշվիչ մեջինաների համար ծրագրման մեթոդի մշակումը։

Հարթ-ուղղորդ-հոդակապային քառօղակների սինքնեղի խնդիրը ընդհանուր առմամբ ձևակնրպվում է այսպես՝

Տրված է մի հարե կոր $y = f_1(x)^*$, որոշել հոգակապային քառօղակի չափը և դիրքը, որի չառավիկի վրա դանվող M կնտը կվերարտադրի $y = f_2(x)$ չառավիկային կորն այնպես, որ նա քիչ տարրերվի արված $y = f_1(x)$ կորից՝ կորի ամրողջ երկարությամբ կամ նրա որոշ մասում։

Հոգակապային ժեխանիզժի ժիջոցով արված տրայնկտորիայի վերաբտադրժան խնդիրը կարելի է ընթել որոնվող պարաժետրների որոշժան խնդրին այնպես, վոր կշռային տարբերությունը (տե՛ս բանաձև 1.1) ջիչ տարբերվի դերուից։

Տվյալ խնդրի ալդորինքի հիման վրա կաղմված է ծրադիր էլեկարոնային հաշվիչ մեջենայի համար։ Հաշվարկված են մոտ 500 տարրեր մեխանիզմներ և, որպես օրինակ, բերված են մի քանի հատկանշական մեխանիդմներ։

Ереванский политехнический институт им. Қ. Маркса

Поступила 18 IV 1961

ЛИТЕРАТУРА

- 1. Левитский Н. И. Синтез механизмов по Чебышеву. Изд. АН СССР, М., 1946.
- Артоболевский И. И., Левитский Н. И., Черкудинов С. А. Синтез плоских механизмов. Гос. издательство физико-математической литературы. М., 1959.
- Чебышев П. Л. О простейшей суставчатой системе, доставляющей движения, симметрические около оси. Собр. соч. АН СССР, т. IV, 1948.
- Артоболевский И. И., Добровольский В. В., Блох З. Ш. Синтез механизмов. ГТТИ М., 1944.
- Гродзенская Л. С. Проектирование шаринрных механизмов по заданой продолжительности остановки ведомого звена. Диссертация. М., 1958.
- 6. Hrones J. A., Nelson G. L. Analysis of the Four-Bar Linkage, New York, 1951.

^{*} Կորը կարող է արված լինել անալիտիկ ձևով կաժ էլ x և y կոորդինատների աղյուսակի ժիջոցով։