

Հայաստանի Կենսաբանական Հանդես Биологический Журнал Армении Biological Journal of Armenia

• Фпрошршрши և инфиции hnpuluoutp • Экспериментальные и теоретические статьи • Experimental and theoretical articles •

Биолог. журн. Армении, 2 (69), 2017

НЕКОТОРЫЕ ФЕНОТИПИЧЕСКИЕ ОСОБЕННОСТИ КВАКШ (AMPHIBIA: HYLIDAE) АРМЕНИИ

М.В. АРЗУМАНЯН*, И.Э. СТЕПАНЯН**, М.С. АРАКЕЛЯН*

*Ереванский государственный университет, **Научный центр зоологии и гидроэкологии НАН РА arzumanyan.meri@ysu.am

Изучены особенности окраски и рисунка тела, морфометрические признаки квакш *Hyla orientalis* и *Hyla savignyi* из 3-х популяций Армении. У обоих видов выявлен доминантный фенотип "зеленая без рисунка". "Зеленая с черными пятнышками" и "темно-зеленая без пятнышек" фенотипы также распространены у обоих видов, тогда как "мозаичный" фенотип – единичен и только в популяциях *Hyla orientalis*. Анализ морфометрических показателей тела двух видов квакш из Армении показал достоверные межпопуляционные и межвидовые различия, которые между видами оказались менее выраженными, чем изменчивость между изученными популяциями *Hyla orientalis*.

Amphibia – Hyla orientalis – Hyla savignyi – морфометрические параметры – окраска и рисунок тела

Ուսումնասիրվել է Յայաստանի Hyla orinetalis (Bedriaga, 1890) և Hyla savignyi (Audouin, 1827) ծառագորտերի մարմնի գունավորման և ձևաբանական առանձնահատկութունների բազ-մազանությունը։ Յայտնաբերվել է, որ ուսումնասիրված 2 տեսակի մոտ գերիշխում է «կանաչ առանց նախշերի» ֆենոտիպը։ «Կանաչ սև կետերով» և «մուգ կանաչ առանց կետերի» ֆենոտիպերը նույնպես տարածված են 2 տեսակների մոտ։ «Մոզաիկ» ֆենոտիպը պարբերաբար տվել է միայն Hyla orientalis -ի մոտ։ Մարմնի ձևաբանական ցուցանիշների համեմատական վերլուծությունը ցույց է տվել ներ- և միջպոպուլյացիոն տարբերությունների հավաստիությունը։ Յայտնաբերվել է, որ միջտեսակային զանազանությունը արտահայտված է ավելի քիչ, բան H. orientalis-ի հետազոտված պոպուլայցիաների միջև։

Երկկենցաղներ – Hyla orientalis – Hyla savignyi –Մարմնի ձևաբանական առանձնահատկութունները – մարմնի գունավորում

Features of dorsal coloration and its patterns as well as morphometric characters of tree-frogs *Hyla orientalis* and *Hyla savignyi* from Armenia were studied. "Green, spot-less" dominant phenotype is common in both species studied. "Green, black spotted" and "dark-green, spot-less" phenotypes are also common in mentioned species, whereas, «mozaic» phenotype is found very rarely and in populations of *Hyla orientalis*. Analysis of morphometric parameters of two species of tree frog from Armenia has shown the inter-population and inter-species difference. The differences between species were less expressed, than those between populations of *Hyla orientalis*.

Amphibia – Hyla orientalis – Hyla savignyi – morphometric features of the body – dorsal color morphs and patterns

Из 7 видов амфибий, распространенных в Армении и относящихся к 5 семействам, два вида принадлежат к семейству квакшевых (Hylidae): *Hyla orinetalis*

Веdriaga, 1890 (ранее *Hyla arborea schelkownikowi* Cernow, 1926) и *Hyla savignyi* Audouin, 1827. Первый вид распространен преимущественно в северных и центральных районах Армении, в то время как *H.savignyi* обитает в основном в южных и восточных районах [2, 3]. В литературных источниках имеются некоторые сведения о распространении, экологии, биоакустике, и цитогенетике квакш Армении [2, 3, 7, 9, 10]. Однако фенотипические и морфометрические особенности квакш территории Армении в литературе представлены неполностью. Целью настоящей работы являлось изучение окраски, рисунка тела и морфометрических параметров квакш из различных популяций северной, центральной и южной Армении.

Материал и методика. Квакши были отловлены в течение 2014–2015 гг. из различных районов Армении (рис. 1 А): Hyla orientalis - из популяций бассейна р. Дебед: (окрестности с. Дсех (40°95'75''с.ш., 44°67'32''в.д., 1293 м н.у.м., 20 ♂)), Одзун (41°05'25'' с.ш., 44°59'13''в.д., 1233 м н.у.м., 21 ♂), Техут (41°11'23'' с.ш., 44°85'14'' в.д., 975 м н.у.м, 40 ♂), и долины р. Мармарик (окр. с. Артавазд, ущелье р. Мармарик, 40°61'26'' с.ш., 44°56'36'' в.д., 1857 м н.у.м., Котайкский р-н., 44 ♂); Hyla savignyi — из популяции бассейна реки Вохчи (окрестности г. Капан, 39° 21' 56" с.ш., 46°43'17" в.д., 923 м н.у.м., 26 ♂). Квакши из разных пунктов бассейна реки Дебед (всего 81 ♂) рассматриваются как происходящие из одной популяции, так как места их обитания находятся в сходных географических и экологических условиях и составляют части непрерывного ареала. Далее по тексту соответствующие выборки упоминаются как "Дебед", 'Мармарик" и "Вохчи".

Морфометрические и фенотипические особенности квакш описывались у половозрелых самцов, ввиду их массовой встречаемости. Регистрация окраски и рисунка тела квакш проводилась согласно методу, описанному в работе Гвоздика и Моравека [6] с некоторыми модификациями. Так как окраска тела квакш подвержена прижизненным изменениям, окраска регистрировалась в течение 3-х часов после отлова. Было зарегистрировано 6 типов окраски спины (зеленая, темно-зеленая, желто-зеленая, коричнево-серая, серая, мозаичная) и 4 типа рисунка спины квакш (отсутствие пятен, наличие белых пятен, наличие черных пятен, крапчатость). Окраска и рисунок тела анализировались, согласно методике Peakall and Smouse [11] с использованием программы GenAIEx 6.502.

Измерения тела квакш были проведены прижизненно, согласно схеме промеров, предложенной Банниковым с соавторами [1]. Изучены 17 морфометрических признаков: (L -длина тела, L.c. -длина головы, Lt.c. - ширина головы, D.r.o. - расстояние от кончика морды до переднего края глаза, D.r.n. – расстояние от кончика морды до ноздри, L.o. – наибольшая длина глазной щели, Lt.p. - наибольшая ширина верхнего века, Sp.p. - расстояние между внутренними краями верхних век, Sp.о – расстояние между передними краями глазных век, Sp.n – расстояние между ноздрями, L.tym – ширина барабанной перепонки, F – длина бедра, T – длина голени, C.s – длина лапки, D.p – длина первого пальца задней конечности, С.і – длина внутреннего пяточного бугорка), М – масса тела, и 20 морфометрических индек-COB: L.c/L, Lt.c./L, D.r.o/L, D.r.n/L, L.o/L, Lt.p/L, Sp.p/L, Sp.o/L, Sp.n/L, L.tym/L, F./L, T./L, C.s/L, D.p./L, C.i./L, M/L, L/(F+T), L.c/Lt.c, L.c*Lt.c/L, L/(F+T+C.s). По каждому морфометрическому параметру были рассчитаны: среднее арифметическое (Mean), ошибка среднего арифметического (SE), минимальное (Min) и максимальное значение параметра (Max). Статистические расчеты были проведены с использованием пакета программ "STATISTICA 7.0". Для множественного сравнения средних был применен Post hoc тест Шеффе однофакторного дисперсионного анализа (ANOVA). Проведен также анализ главных компонент и дискриминантный анализ трех популяций, основанный на распределении главных компонент. Величина дистанции между популяциями была определена в виде квадрата расстояния Махаланобиса (Squared Mahalanobis Distance – SMD).

Результаты и обсуждение. Окраска и рисунок тела кваки

Сравнительный анализ окраски и рисунка тела двух видов квакш Армении показал, что во всех выборках доминантным типом окраски является "зеленая без пятен". Темно-зеленая окраска встречается у квакш реже и выявлена в 2-х популяциях *H. orientalis* (табл. 1). Коричнево-серый тип окраски у квакш Армении встре-

чается еще реже, и, возможно, связан с их приспособительной реакцией на особенности грунта биотопа, что дает лягушкам возможность смешаться с окружающей средой (homochromy), чтобы избежать визуального обнаружения хищниками [8]. В частности, коричневая морфа может встречаться в тех местообитаниях, где в составе биотопа наблюдаются скалистые и каменистые структуры и произрастают низкорослые растения [4]. "Мозаичный" фенотип встречается единично, и среди квакш из изученных 3-х популяций отмечен только в популяциях *H. orientalis*. Однако данный тип окраски был отмечен ранее нами также и в западных популяциях *H. savignyi* [9]. Согласно некоторым авторам [4], мозаичный тип пигментации, возможно, возникает в результате неполных онтогенетических изменений. В целом у обоих видов квакш Армении выявлены три более распространенных фенотипа: "зеленая без пятен", "зеленая с черными пятнышками" и "темно-зеленая без пятнышек".

Таблица 1. Анализ частот встречаемости окраски и рисунка тела в изученных выборках квакш

Признаки	<i>H.orientalis</i> "Мармарик"	H.orientalis "Дебед"	H.savignyi "Вохчи"
Зеленая	0,808	0,707	1
Темно-зеленая	0,038	0,122	0
Коричнево-серая	0	0,098	0
Желто-зеленая	0,077	0,024	0
Серая	0	0,024	0
Мозаичная	0,077	0,024	0
Без пятен	0,808	0,049	0,04
Пятна черные	0,077	0,927	0,88
Пятна белые	0	0,024	0
Крапчатая	0	0	0,08

Анализ окраски и рисунка тела квакш из 3-х популяций в Армении показал наиболее высокое разнообразие цветовых морф среди квакш Шелковникова из популяции "Дебед" — 5 типов окраски и 4 типа рисунка спины (табл. 1). Исходя из того, что у квакш пигментация кожи может спонтанно меняться под влиянием различных причин, связанных с адаптацией к окружающей среде, терморегуляцией [12], наличием экстремальных условий окружающей среды, таких как солоноватость воды, интенсивное солнечное облучение, влияющие на экспрессию некоторых морфологических признаков квакш [4], наличие высокого процента встречаемости шести морф только у квакш из популяции "Дебед" можно объяснить влиянием особых условий обитания в данном районе. В местах обитания квакш бассейна реки Дебед этими условиями могут быть: особый минеральный состав воды, условия повышенной влажности в окрестностях небольших водоемов, высокий фон солнечной радиации и др.

Морфометрические показатели квакш

Описание морфометрических характеристик тела половозрелых самцов из трех популяций, относящихся к двум видам квакш Армении, представлены в табл. 2. Достоверные различия между двумя видами были зафиксированы по L, F, L.o./L, Sp.o/L признакам и индексам, а между двумя популяциями H. orientalis по D.r.o./L, D.r.n./L, Sp.n/L индексам.

Достоверные различия между тремя выборками квакш проявились по 2 индексам: *Lt.p/L*, *Sp.p./L*. Анализ главных компонент (PCA) по 17 морфометрическим параметрам тела и 20 индексам пропорциональности квакш показал, что особи

H.orientalis из популяции "Дебед" отличаются значительно больше от остальных изученных выборок Армении, чем особи H. savignyi из популяции "Вохчи" и H. orientalis из популяции "Мармарик". (рис 1.A, табл. 3). Ось первой дискриминантной функции объясняет 25.11% различий. Наибольший вклад в ее дискриминацию вносят параметры "отношение длины тела к сумме длин частей задней конечности": (L/(F+T+C.s) и L/(F+T)). Ось второй функции объясняет 14.94% различий, и по этой оси отличие вносят параметры "отношение длины головы к ширине головы и отношение длины бедра к длине тела" (L.c/Lt.c и F./L). Ось третей функции объясняет 12.68% различий, и по этой оси отличие вносят параметры "отношение длины глазной щели к длине тела и длины барабанной перепонки к длине тела" (L.c/Lt.c и L.tym/L).

Таблица 2. Характеристика морфометрических признаков *H.orientalis* и *H.savignyi* из трех популяций Армении

Признаки	H.orientalis "Мармарик"		H.orientalis "Дебед"		H.savignyi "Вохчи"	
	Mean±SE	Min-Max	Mean±SE	Min-Max	Mean±SE	Min-Max
L	40,94±0,59	34,90-45,70	40,45±0,39	34-47	38,44±0,61	31-46
L.c.	12,50±0,2	11-13,9	12,82±0,22	10-16,2	12,25±0,3	10-15,5
Lt.c.	15,21±0,29	11,7-17,9	12,37±0,2	9-15	11,84±0,24	9,6-15,3
D.r.o	6,43±0,16	5,10-7,60	5,79±0,14	4,00-9,00	6,10±0,14	5,00-7,00
D.r.n	3,47±0,09	2,20-3,90	2,43±0,03	2,00-2,90	3,28±0,10	2,00-4,40
L.o	4,45±0,12	3,20-5,60	4,59±0,10	3,50-5,80	4,95±0,12	4,00-6,60
Lt.p	5,17±0,15	4,10-6,80	2,85±0,06	1,50-3,40	4,28±0,08	3,80-5,60
Sp.p	5,15±0,12	4,10-6,20	3,11±0,12	2,00-4,30	4,06±0,13	2,00-5,00
Sp.o	8,03±0,16	6,40-9,60	7,54±0,12	6,00-9,00	8,22±0,18	6,50-9,60
Sp.n	3,72±0,10	3,10-4,60	3,13±0,05	2,50-3,70	3,52±0,08	3,00-4,40
L.tym	3,32±0,13	2,10-3,90	3,13±0,12	2,00-4,50	3,45±0,14	2,20-4,70
F	20,91±0,27	18,10-23,70	20,55±0,27	15,00-23,20	19,20±0,39	15,40-23,00
T	20,37±0,25	18,20-23,50	19,73±0,23	15,70-22,0	18,96±0,33	16,00-23,70
C.s	10,35±0,21	8,10-11,90	10,19±0,16	8,50-12,40	10,32±0,21	8,70-12,50
D.p	4,94±0,11	4,10-6,10	4,20±0,10	3,00-5,80	3,93±0,10	3,00-5,30
C.i	2,37±0,11	1,40-4,20	2,62±0,07	1,60-3,40	2,18±0,03	2,00-2,50
M	5,43±0,24	3,50-7,50	4,94±0,13	3,50-6,80	4,69±0,23	3,20-8,20

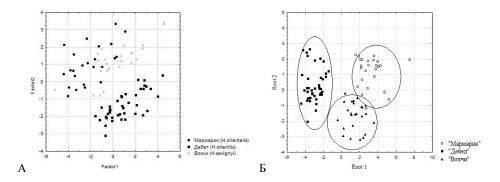


Рис.1. А – Графическое выражение распределения главных компонент морфометрических характеристик и индексов квакш *H. orientalis* и *H. savignyi* из выборок трех популяций Армении, Б – диаграмма рассеяния для канонических значений дискриминантных функций морфометрических характеристик квакш *H. orientalis* и *H. savignyi* из выборок трех популяций Армении.

 Таблица 3. Анализ главных компонент морфометрических индексов особей H.orientalis и H.savignyi из трех популяций Армении

Параметры	Фактор 1*	Фактор 2*	Фактор 3*	Фактор 4*
L.c/L	-0,13	-0,36	0,07	0,74
Lt.c./L	-0,65	0,45	0,37	-0,08
D.r.o/L	-0,45	0,09	-0,38	-0,31
D.r.n/L	-0,47	0,34	-0,25	0,33
L.o/L	-0,06	0,04	-0,73	0,13
Lt.p/L	-0,67	0,46	-0,14	0,12
Sp.p/L	-0,67	0,40	0,22	0,29
Sp.o/L	-0,42	0,17	-0,54	0,04
Sp.n/L	-0,43	0,47	-0,42	0,19
L.tym/L	-0,28	0,08	-0,63	-0,21
F/L	-0,62	-0,61	0,10	-0,19
T/L	-0,64	-0,50	0,10	-0,07
C.s/L	-0,52	-0,31	-0,23	0,13
D.p./L	-0,53	0,07	0,46	0,04
C.i./L	-0,01	-0,20	-0,27	-0,32
M/L	-0,04	0,23	0,17	-0,48
L/(F+T)	0,71	0,62	-0,10	0,16
L.c/Lt.c	0,43	-0,57	-0,22	0,52
L.c*Lt.c/L	-0,47	0,25	0,53	0,21
L/(F+T+C.s)	0,75	0,57	0,06	0,06

Дискриминантный анализ индексов пропорциональности выявил ту же закономерность. Морфометрические расстояния (SMD) между двумя популяциями одного вида *H.orientalis* оказались больше (табл. 4), чем между популяциями, принадлежащими к разным видам квакш.

Таблица 4. Сравнение индексов тела квакш из трех популяций Армении по квадратным расстояниям Махаланобиса

Вид, популяция	H.orier	H.savignyi	
-	"Мармарик"	"Дебед"	"Вохчи"
H.orientalis "Мармарик"	0,00	39,74	11,08
H.orientalis "Дебед"	39,74	0,00	24,13
H.savignyi "Вохчи"	11,08	24,13	0,00

При вычислении коэффициентов дискриминантных (канонических) функций были получены данные, свидетельствующие о том, что функция 1 (Root 1) ответственна за 89% всей дискриминирующей мощности, в то время как функция 2 (Root 2) определяет только 15% дискриминирующей мощности. Факторная структура показывает, что наибольшие корреляции с дискриминантной функцией 1 имеют Фактор 1 и Фактор 2. Наибольшие корреляции с дискриминантной функцией 2 — Фактор 3. На рис. 1 Б представлена диаграмма рассеяния канонических значений для пар значений дискриминантных функций. Из рис. 1 Б видно, что квакши, принадлежащие к одной выборке, локализованы в определенных областях плоскости, при этом эллипсы рассеяния популяции "Мармарик" и популяции "Дебед" значительно различаются по совокупности исследованных показателей. Эллипс рассеяния популяции "Вохчи" локализован в определенной области плоскости и при этом имеет незначительные области перекрывания с популяцией "Мармарик".

Наши результаты показали, что квакши *H. orientalis* из выборки северной популяции "Дебед" отличаются как от квакш центральной популяции "Мармарик" этого же вида, так и от квакш *H. savignyi* как по морфометрическим характеристикам тела, так и по разнообразию окраски и рисунка, и внутривидовой полиморфизм выражен у этого вида в большей степени, чем межвидовой.

Наблюдаемые различия могут быть объяснены особенностями изученных биотопов: особи квакш из популяций "Мармарик" и "Вохчи" были отловлены на затопленных участках берега, заросших в основном видами родов *Salix* L., вдоль быстротекущих небольших и неглубоких рек Мармарик и Вохчи, тогда как биотопы популяции "Дебед" во всех трех пунктах иные, это небольшие озерца, расположенные на полянах в горно-лесном поясе и частично заросшие водно-болотными видами родов *Typha* L., *Carex* L., *Juncus* L. и др.

Авторы благодарят проф. С. Х. Пипояна (Армянский педагогический университет, Ереван), к.б.н. М. Ю. Каляшяна, к.б.н. Г. А. Карагян и к.б.н. М. Я. Рухкяна (Научный центр зоологии и гидроэкологии НАН РА, Ереван), к.б.н. С. Н. Литвинчука (Институт цитологии РАН, Санкт-Петербург) за помощь и ценные рекомендации в процессе работы.

Работа выполнена при частичной финансовой поддержке фонда "The Rufford Small Grants Foundation", грант № 13769-1.

ЛИТЕРАТУРА

- 1. Банников А.Г., Даревский И.С., Ищенко В.Г., Рустамов А.К., Щербак Н.Н. Определитель земноводных и пресмыкающихся СССР. М., Просвещение. с. 415, 1977.
- 2. *Егиазарян Е.М.* Фауна и экология амфибий Армении. Автореферат докторской диссертации. Ереван, с. 44, 2008.
- Arakelyan M.S., Danielyan F.D., Corti C., Sindarco R., Leviton A. Herpetofauna of Armenia and Nagorno Karabakh. Ithaca, New York. 10-50, 2011.
- 4. Dufresnes C., Gangoso L., Perrin N., Stock M. Stripeless tree frogs (Hyla meridionalis) with stripes on the Canary Islands. Salamandra. 47, 4, 232-236, 2011.
- 5. Egiasaryan E.M., Schneider H. The matting calls of tree frogs in Armenia (Anura, Hylidae). Zool. Anzeig., 225, 113-122, 1990.
- Gvoždik V., Moravec J., Variation of H. savignyi: A color pattern of Cypriote and Mainland populations. In: 12-th ordinary General meeting SHE, Sanit-Peterburg. p. 32-34, 2003.
- 7. *Martirosyan A., I. Stepanyan*. The kariotype of *Hyla savignyi* Audouin, 1827 (Amphibia: Anura) from Soluthern Armenia. Comparative Cytogenetics. *1*, 2, 107-112, 2007.
- 8. *Hoffmann, E.A., M.S. Blouin.* A review of colour and pattern polymorphisms in anurans. Biological Journal of the Linnean Society, *70*, 633-665, 2000.
- Nikoghosyan G.N, Arzumanyan M.V., Stepanyan I.E. Color morph and color pattern variation in several populations of Armenian tree frogs. Biological diversity and conservation problems of the fauna of the Caucasus-2, International conference, 276-279, 2014.
- 10. *Schneider H., Nevo E.* Bio-acoustic study of the yellow-lemon tree frog, *Hyla arborea savignyi* Audouin. Zool. Jb. Physiol., *76*, 497-506, 1972.
- 11. Peakall R., Smouse P. E. GenAlEx V5: Genetic Analysis in Excel. Population genetic software for teaching and reseach. Australian National University, Canberra, Australian http://www.anu.edu.au./BoZo/GenAlEx/, 2001.
- 12. Vences, M., P. Galan, D. R. Vieites, M. Puente, K. Oetter, S. Wanke Field body temperatures and heating rates in a montane frog population: the importance of black dorsal pattern for thermoregulation. Annales Zoologici Fennici. 39, 209-220, 2002.