ДИЗЧИЛИБ ИИР ЧРЅПРОВЫРР ИЛИЧЫТЫЦЗЕ ЅБЦЬЦИЧРР ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

Зфарфия-авиры выполнять вышения выполнять выстраннять выполнять выстранны выполнять выполнять выполнять выполнять выполнять выполнать выполнять выполнять выполнять выполнять выполнить выполнить в

АЭРОГИДРОМЕХАНИКА

А. Г. Багдоев

Осесимметричная автомодельная задача для ударного давления

Рассматривается задача о проникании вглубь среды, занимающей нижнее полупространство, ударной водны, которая движется по поверхности полупространства по симметричному закону.

Обозначим через О точку возникновения давления на поверхности, выберем ось Ох в плоскости поверхности, ось Оу направим вглубь полупространства. Рассмотрим осесимметричную автомодельную задачу для случая сжимаемой жидкости.

Уравнение политроны имеет вид [1]

$$P = B \left[\left(\frac{2}{2_0} \right)^n - 1 \right].$$
 (1)

Здесь P— давление жидкости, у — плотность, B_{\star} у $_{0}$ n— константы. На границе жидкости задано граничное условие

$$P(x, |0, |t) = \begin{vmatrix} \overline{P}_{t}P_{u}\left(\frac{x}{t}\right), & x \leq Vt, \\ 0, & x > Vt. \end{vmatrix}$$
(2)

где V — скорость движения фронта давления на границе жидкости, \overline{P}_1 — постоянное давление на фронте, $P_a\left(\frac{x}{t}\right)$ — распределение давления за фронтом (гочки A, фиг. 1), $P_a\left(V\right)=1$. Пусть V — c, где e—скорость звука в жидкости,

Введем автомодольные координаты $\xi = \frac{x}{t} \cdot \eta_t - \frac{y}{t}$

Уравнение Эйлера и уравнение перазрывности движения для екоростей V_{σ} . V_{σ} и давления P имеют вид

$$\frac{\partial V_x}{\partial \hat{\epsilon}} (V_x - \hat{\epsilon}) = \frac{\partial V_y}{\partial \eta} (V_y - \eta) + \frac{1}{2} \frac{\partial P}{\partial \hat{\epsilon}} = 0,$$

$$\frac{\partial V_x}{\partial \hat{\epsilon}} (V_x - \hat{\epsilon}) + \frac{\partial V_y}{\partial \eta} (V_y - \eta) + \frac{1}{2} \frac{\partial P}{\partial \eta} = 0,$$
(3)

$$\begin{split} \frac{\partial P}{\partial \xi} (V_x - \bar{\xi}) + \frac{\partial P}{\partial \tau_i} (V_y - \tau_i) + sc^2 \left(\frac{\partial V_x}{\partial \bar{\xi}} + \frac{\partial V_y}{\partial \tau_i} - \frac{V_x}{\bar{\xi}} \right) = 0, \\ c^2 = \frac{dP}{ds} \cdot \end{split}$$

Выведем уравнение характеристик для системы (3). Вдоль характеристики 4 (4 имсем

$$\frac{\partial V_x}{\partial \xi} = \frac{dV_x}{d\xi} - \frac{\partial V_x}{\partial \tau_i} \frac{d\tau_i}{d\xi}$$

и такое же соотношение для нараметров V_{γ} и P_{γ}

Подставив эти соотношения в (3) и записав условие неоднозначности решения системы, получим уравнения характеристик

$$V_{v} - \tau_{i} - \frac{d\tau_{i}}{d\hat{z}} (V_{X} - \hat{z}) = -c \int 1 - \left(\frac{d\tau_{i}}{d\hat{z}}\right)^{2} = -\frac{c}{\cos x}, \tag{4}$$

$$i \frac{dP}{d\hat{z}} + \frac{dv}{d\hat{z}} ze^{2} - \frac{-c\cos z}{-v\sin z - \hat{z} - c\sin z} ze^{2} \frac{dx}{d\hat{z}} = -\frac{cv_{0}c^{2}}{-v\sin z - \hat{z} - c\sin z} = 0, \tag{5}$$

где v=1 $V_x^2-V_{r_s}^2$ α — угол наклона характеристики к оси O_X (динии A'B', фиг. 1).

В дальнейшем предполагается, что скорость движения жидкости направдена по нормали к характеристике, что выполняется для волн, догоняющих ударный фронт (AB, фиг. 1).

Если положить $V_{\rm v}=v\sin\alpha$, $V_{\rm y}=v\cos\alpha$, то уравнение характеристик первого семейства (4) занишется в виде

$$\frac{\eta - \varepsilon \frac{d\eta}{d\varepsilon}}{1 - \left(\frac{d\eta}{d\varepsilon}\right)^2} = c - v. \tag{6}$$

Из (1), для небольших $\frac{P}{Bn}$, имеех

$$g = g_0 \left(1 + \frac{\rho}{Bn} \right), \qquad \varepsilon = a_n \left(1 + \frac{\rho}{Bn} \frac{n-1}{2} \right), \tag{7}$$

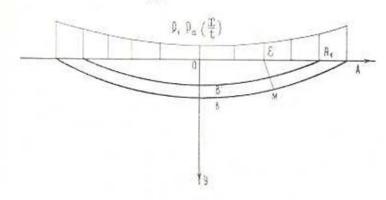
где $\mathfrak{p}_0,\ a_0$ — начальные параметры жидкости.

Из условия на ударном фронте, с точностью до малых $\frac{P}{Bn}$ второго порядка, имеем

$$v = \frac{1}{a_{a'a}} \left(P - \frac{n-1}{4} \frac{P^2}{Bn}\right)$$

HAR $dv = \frac{dP}{9c}$.

Предположение о малости $\frac{P}{Bn}$ выполняется при давлениях порядка 1000 атмосфер. Например, для воды $B=3045~\kappa r_i cn^2,~n=7$ и при $\widehat{P}_1=1000~\kappa r_i cn^2$ имеем $\frac{P_1}{Bn}\sim 0.05$.



Dut. L.

Система (5)—6—в общем виде просто не дожет быть пропитегрирована. Для давлений до 20000 атмосфер можно было бы провитегрировать ее числению и найти решение задачи, превебрегая влиянием ударной волны. Однако для небольших $\frac{P}{Bn}$ можно ограничиться двумя членами разложения, учитывающими, помимо липейного члена, малое второго порядка $\frac{P}{Bn}$.

Пусть $P=P_1+\frac{1}{Bn}P_2$, $\tau_1=\tau_{01}+\frac{1}{Bn}\tau_{02}$, где $\frac{P_1}{Bn}$ —малое первого порядка. Подставия значения у и τ_1 в (5) и в (6) и приравияв слагаемые с первой и второй степенями $\frac{P_1}{Bn}$, получим

$$2\frac{dP_1}{d\hat{z}} = \frac{-\cos z_1}{a_0 \sin z_1} a_0 P_1 \frac{dz_1}{d\hat{z}} - \frac{-\sin z_1}{\hat{z}} \frac{1}{\hat{z} - a_0 \sin z_1} a_0 P_1 = 0, \quad (8)$$

$$2\frac{dP_2}{d\hat{z}} + \cos^3 z_1 \frac{d^2 \eta_2}{a\hat{z}^2} \frac{a_0}{\hat{z} - a_0 \sin z_1} + \frac{1}{\hat{z}} \frac{\cos^3 z_1}{d\hat{z}} \frac{dz_2}{a_0 P_1} - \sin z_1 a_0 P_1^2 \frac{3n - 1}{4} - \frac{n - 1}{2} a_0 \sin z_1 + \frac{n - 1}{2} a_0 \sin z_1 P_1^2 + a_0 \cos^3 z_1 \frac{dz_2}{d\hat{z}} P_1 + a_0 \sin z_1 P_1^2 - \sin z_1 = 0, \quad (9)$$

$$i_{c} + (-\xi + a_{0}\sin \alpha_{1})\frac{dv_{c}}{d\xi} = P_{1} - \frac{\frac{n-1}{2}a_{0}}{\cos \alpha_{1}}$$
 (10)

где $z_1 = \text{const.}$ причем $\sin z_1 = \frac{a_0}{1}$.

 P_1 соответствует линейной задаче, причем из (8) получаем вдоль A^*B^* (фиг. 1) решение в виде

$$P_{1} = \overline{P}_{1}P_{n}\left(\xi\right) \sqrt{\frac{1 - u_{0}\sin \alpha_{1}}{\xi}} \sqrt{\frac{z_{1}}{\xi' - u_{0}\sin \alpha_{1}}},$$

где 1' соответствует граничной точке А' фиг. 1.

Оченидно, в силу малости $\frac{P}{Bn}$ из (7) на фронт будут влиять характеристики, отстоящие на расстоянии $\sim \frac{P}{Bn}$. Поэтому $\Gamma = V - \frac{1}{Bn} \tilde{\eta}_1$, где $\tilde{\eta}_1$ – конечиля величина. В силу этого имеем с точностью до малых вгорого порядка $\frac{P}{Bn}$

$$P_{1} = \tilde{P}_{1} \left[\begin{array}{c|c} \frac{\mathbb{E} - a_{0} \sin \alpha_{1}}{\mathbb{E}} & \frac{V}{V - a_{0} \sin \alpha_{1}} \\ & V - a_{0} \sin \alpha_{1} \end{array} \right]$$

$$= \frac{\tilde{P}_{1}}{\mathbb{E}} \left[\begin{array}{c|c} \frac{V}{V - a_{0} \sin \alpha_{1}} & \frac{1}{V} & \frac{1}{V - a \sin \alpha_{1}} \\ & V - a_{0} \sin \alpha_{1} \end{array} \right]$$

$$= \frac{1}{V} \left[\begin{array}{c|c} V & V - a \sin \alpha_{1} \\ V - a_{0} \sin \alpha_{1} & 2 \end{array} \right]$$

$$= \frac{1}{V} \left[\begin{array}{c|c} V & V - a \sin \alpha_{1} \\ V - a_{0} \sin \alpha_{1} & 2 \end{array} \right]$$

$$= \frac{1}{V} \left[\begin{array}{c|c} V & V - a \sin \alpha_{1} \\ V - a \cos \alpha_{1} & 2 \end{array} \right]$$

$$= \frac{1}{V} \left[\begin{array}{c|c} V & V - a \sin \alpha_{1} \\ V - a \cos \alpha_{1} & 2 \end{array} \right]$$

$$= \frac{1}{V} \left[\begin{array}{c|c} V & V - a \sin \alpha_{1} \\ V - a \cos \alpha_{1} & 2 \end{array} \right]$$

$$= \frac{1}{V} \left[\begin{array}{c|c} V & V - a \sin \alpha_{1} \\ V - a \cos \alpha_{1} & 2 \end{array} \right]$$

$$= \frac{1}{V} \left[\begin{array}{c|c} V & V - a \sin \alpha_{1} \\ V - a \cos \alpha_{1} & 2 \end{array} \right]$$

$$= \frac{1}{V} \left[\begin{array}{c|c} V & V - a \sin \alpha_{1} \\ V - a \cos \alpha_{1} & 2 \end{array} \right]$$

$$= \frac{1}{V} \left[\begin{array}{c|c} V & V - a \sin \alpha_{1} \\ V - a \cos \alpha_{1} & 2 \end{array} \right]$$

$$= \frac{1}{V} \left[\begin{array}{c|c} V & V - a \sin \alpha_{1} \\ V - a \cos \alpha_{1} & 2 \end{array} \right]$$

$$= \frac{1}{V} \left[\begin{array}{c|c} V & V - a \sin \alpha_{1} \\ V - a \cos \alpha_{1} & 2 \end{array} \right]$$

$$= \frac{1}{V} \left[\begin{array}{c|c} V & V - a \cos \alpha_{1} \\ V - a \cos \alpha_{1} & 2 \end{array} \right]$$

$$= \frac{1}{V} \left[\begin{array}{c|c} V & V - a \cos \alpha_{1} \\ V - a \cos \alpha_{1} & 2 \end{array} \right]$$

Первое слагаемое (11) дает решение линейной задачи в точке M (фиг. 1). Очевидно, в (10) достаточно ограничиться линейной частью P_1 из (11),

Питегрируя (10) при граничном условии $\tau_{\rm ef}=0$ при t=t' имеем

причем в (12) можно считать $\xi' = V$.

В личейном приближении решение (4) имеет вид

$$V = \frac{V - \frac{2}{3}}{V - \frac{V^2}{a_0^2} - 1}.$$
(13)

 $C^{(4)}$ евидно $\frac{\epsilon_0}{Bn}$ представляет нелинейный добавок. Оценим величину

этого доблака. Пусть
$$\frac{a_0}{V} = -\frac{1}{4} - \sin \alpha_i$$
, $V' = 4 + a_0 \sin \alpha_i$,

 $\sqrt{\xi} = 3$ 1 $a_0 \sin a_1$. Тогда из 12) имеем $i_2 \frac{1}{Bn} = 200$ м/сек, в то же время

линейное д равно 750 м сек, то есть добавок составляет более 20%, от общей д координаты характеристики или ударного фронта.

Для определения давления на фронте ударной волны всобходимо решить уравнение (6), где вместо P стоят линейный член P_1 . Очевидно, решение уравнения (6) при граничном условии $1=\mathbb{C}$, $\eta=0$ имеет вид

$$s_i = -\frac{z^2 - z}{\frac{z^2}{a_0^2} - 1}, -\frac{1}{Bn}\epsilon_0,$$
 (14)

где τ_a найдется из (12) раздожением по степеням $t_i = V - t'$. Раздагая (14) по степеням t_i , приближенно получим, что

$$\eta_{\epsilon} = \frac{V - \hat{z}}{V^2 - a_0^2 - 1} - a_0^2 - \hat{z}(b_0^2), \tag{15}$$

причем

$$\begin{split} a\left(\xi\right) &= \frac{V^2 - \xi}{\left(\frac{V^2}{a_0^2} - 1\right)^{5\pi} a_0^2} \frac{v^2}{2} \frac{u - 1}{Bn} P_n\left(V\right) \left[\begin{array}{c} V \\ V - a_0 \sin x_1 \end{array} \right] \frac{1}{\xi} - a_0 \sin x_1 \\ &+ \frac{a_0}{Bn} \frac{u + 1}{2} \frac{1}{\cos x_1} \left[\begin{array}{c} \xi - a_0 \sin x_1 P_n\left(V\right) \end{array} \right] \frac{V}{V - a_0 \sin x_1} \left[\begin{array}{c} 1 \\ 1 \\ a_0 \sin x_1 \end{array} \right] \\ &\times \ln \frac{1}{t} \frac{V}{V} \frac{V}{V} a_0 \sin x_1} \frac{1}{t} \frac{\xi}{\xi} + \frac{1}{t} \frac{1}{$$

Вдоль ударного фронта имеет место формула [2]

$$D = \frac{\sqrt{1 - \frac{1}{\epsilon} \frac{d \eta_i}{d \hat{\epsilon}}}}{\sqrt{1 + \left(\frac{d \eta_i}{d \hat{\epsilon}}\right)^2}} = \frac{c + v + a_u}{2}, \quad (16)$$

где D — скорость ударной волны.

Характеристики (15) $\eta_i(\xi, \xi')$ нагоняют ударный фронт и взаимодействуют с ударным фронтом. Вдоль ударного фронта η_i является функцией только ξ_i и в силу (15) ξ' также есть функция ξ_i (13 (15) и (16) получим уравнение для ξ_i в функции ξ_i вдоль AB (фиг. 1).

Решение этого уравнения при граничном условии $\Xi=0$, при $\Xi=V$ вмеет вид

$$\xi_{1} \frac{\xi - V \sin^{2} x_{1}}{\int b(\xi) (\xi - V \sin^{2} x_{1})} =$$

$$\int_{V}^{\frac{1}{2}} \left[(\xi - V \sin^{2} x_{1}) \frac{a_{0} \frac{u - 1}{4Bn} P_{n}(V)}{\int \frac{\xi - a_{0} \sin x_{1}}{\xi} \int \frac{V}{V - a_{0} \sin x_{1}} + \frac{1}{2\pi i} \frac{b(\xi) (\xi - V \sin^{2} x_{1})}{\int \frac{b(\xi) (\xi - V \sin^{2} x_{1})}} \right] d\xi.$$
(17)

Телеръ вдоль ударной водны имеем с точностью до мадых вгорого порядка

$$P = P_1 - \frac{1}{Bn}P_2$$

11.111

$$P = \tilde{P}_{1} \left[-\frac{\frac{1}{2} - a_{0} \sin z_{1}}{\frac{1}{2}} - \frac{V}{V - a_{0} \sin z_{1}} + \frac{1}{V - a_{0} \sin z_{1}} + \frac{1}{V - a_{0} \sin z_{1}} - \frac{2P_{n}(V) - \frac{1}{V} - \frac{1}{V - a_{0} \sin z_{1}}}{\frac{1}{V - a_{0} \sin z_{1}}} \right] = \frac{1}{V - a_{0} \sin z_{1}} + \frac{1}{V - a_{0} \sin z_{1}} + \frac{1}{V - a_{0} \sin z_{1}} + \frac{1}{V - a_{0} \sin z_{1}} = \frac{1}{V - a_{0} \sin z_{1}} + \frac{1}{V - a_{0} \sin z_{1}} + \frac{1}{V - a_{0} \sin z_{1}} = \frac{1}{V - a_{0} \sin z_{1}} + \frac{1}{V - a_{0} \sin z_{1}} = \frac{1}{V - a_{0} \sin z_{1}} + \frac{1}{V - a_{0} \sin z_{1}} = \frac{1}{V - a_{$$

Злесь ξ_1 двется (17), в P_2 определяется из (9), записанного в виде

$$P_{2} = \int_{1}^{\xi} A_{z}(\xi), \quad \frac{dP_{z}}{d\xi} = A_{z}(\xi), \quad 2A_{z}(\xi) - \frac{a_{0}^{2}(n-1)}{4} \frac{dP_{1}}{d\xi} \frac{P_{1}\cos^{3}x_{1}}{\cos x_{1}(\xi - a_{0}\sin x_{1})} + \frac{\cos^{3}x_{1}}{\xi} \frac{a_{0}^{2} \frac{1}{2}P_{1}^{2}}{(\xi - a_{0}\sin x_{1})} \frac{1}{\xi} \sin x_{1}a_{0}P_{1}^{2} \frac{3n-1}{4} \frac{1}{\xi - a_{0}\sin x_{1}} - \frac{1}{\xi} \frac{1}{\xi - a_{0}\sin x_{1}} \frac{1}{\xi - a_{0}\sin x_{1}} \frac{\sin x_{1} - a_{0}}{(\xi - a_{0}\sin x_{1})^{2}} P_{1}^{2} + \frac{\cos^{2}x_{1}}{\xi} \frac{-1}{(\xi - a_{0}\sin x_{1})^{2}} \frac{1}{\xi - a_{0}\sin x_{1}} \frac{1}{\xi - a_{0}\sin x_{1}}$$

$$= \frac{1}{\xi} \sin x_{1} \cos^{2}x_{1}a_{0}P_{2}\eta_{2} \frac{1}{(\xi - a_{0}\sin x_{1})^{2}} (19)$$

Очевидно, для определения $P_{\mathfrak{g}}$ получаются простые иррациональные интегралы.

Итак мы получили решение в точке ударной волны M (фиг. 1). Полученное решение является достаточно точным для давлений до 1000 кг см².

Институт математики и механики АН Армянской ССР:

Ա. Գ. Բազգոեվ

ԱՌԱՆ8ՔԱՍԻՄԵՏՐԻԿ ԱՎՏՈՄՈԴԵԼԱՅԻՆ ԽՆԴԻՐԸ ՀԱՐՎԱԾԱՅԻՆ ՃՆՇՄԱՆ ՀԱՄԱՐ

UUTONOTH

Աշխատության մեջ արտուժվում են սեղմելի հեղուկի առանցքառիմեարիկ ավտոմոդելային շարժման խարականրիստիկ առնչությունները և որոշվամ են վուրը պարաժետրի նկտումամբ վերլուծության առաջին երկու անդանները։ Հարվածային հակատի կապակցությունների միջոցով այդ մոտավովրա։

ЛИТЕРАТУРА

- Станюкович К. И. Неустановившиеся движения сплошной среды. М., Гостехналат. 1954.
- Курант Г. и Фриорах К. Сверхзвуковое течение и ударные водим. П.Л. М., 1950.