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Hemorphins, a family of endogenous nonclassical opioid peptides derived from hemoglobin 
(Hb), exert a wide spectrum of biological activity by affecting different receptors function. 
Hemorphins play an important role in the regulation of nervous and immune systems and 
hypothalamo-pituitary-adrenocortical (HPA) axis activity. Molecular mechanisms underlying the 
actions of hemorphins involve the integration of Ca2+/calmodulin/calcineurin/NFAT signaling 
pathway with µ-opioid receptors (MOR) function and other metabolic pathways.  

 
Hemorphin  –  Ca2+/calmodulin(CaM)/calcineurin/NFAT signaling pathway  – MOR  –  HPA axis –  

endotoxin-induced stress 
 
Հեմորֆինները հեմոգլոբինից (Hb) առաջացած ոչ դասական էնդոգեն օպիոիդ պեպտիդների 

ընտանիք են, որոնք օժտված են կենսաբանական ակտիվության լայն սպեկտրով, ազդելով տարբեր 
ռեցեպտորների ֆունկցիայի վրա: Հեմորֆինները կարևոր դեր են կատարում նյարդային, իմունային և 
հիպոթալամո-հիպոֆիզար-մակերիկամային (HPA) համակարգերի ակտիվության կարգավորման 
գործում: Հեմորֆինների ազդման մոլեկուլային մեխանիզմները ներառում են Ca2+/ 
կալմոդուլին/կալցինեյրին/NFAT ազդանշանային ուղու ինտեգրացումը µ-օպիոիդ ռեցեպտորների 
(MOR) ֆունկցիայի և այլ նյութափոխանակային ուղիների հետ: 

 
Հեմորֆին  –  Ca2+/ կալմոդուլին/կալցինեյրին/NFAT ազդանշանային ուղի  –  MOR   –   

  HPA համակարգ  –   էնդոտոքսինիով-խթանված ստրես 
 

Геморфины являются семейством эндогенных неклассических опиоидных пептидов, 
предшественником которых является гемоглобин (Hb). Они обладают широким спектром 
биологической активности, воздействуя на функции различных рецепторов. Геморфины иг-
рают важную роль в регуляции нервной и иммунной систем, а также гипоталамо-гипофи-
зaрно-надпочечниковой (HPA) оси. Молекулярные механизмы действия геморфинов вклю-
чают интегрaцию Ca2+/ кальмодулин/кальцинейрин/NFAT сигнального пути с функцией µ- 
опиоидныx рецепторов (MOR) и других метаболических путей. 

 
Геморфин  –   Ca2+/ кальмодулин/кальцинейрин/NFAT сигнальные пути  –   MOR –                          

HPA ось  –  эндотоксин-индуцируемый стресс. 
 

It is well known that biologically active peptides are power instrument for subtle regu-
lation of metabolic processes in the organism in physiology and pathophysiology (stress, in-
fection, inflammation) and this is one of the ways providing the homeostasis of the organism. 
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Hemorphins are nonclassical opioid peptides derived from hemoglobin (Hb) presented 

in CNS [25, 10-11, 31], peripheral organs [59] and body fluid [for review see Ref. 41]. They 
appeared to be relatively stable in tissue extracts and blood plasma, suggesting a physiological 
significance of these peptides [41]. Hemorphins demonstrate a wide spectrum of biological 
activity by affecting different receptors function (e.g.              µ-,  δ- and κ-opioid receptors 
[60], angiotensin (Ang) IV receptor (AT4) [39], bombesin receptor subtype 3 (hBRS-3) [33] 
and corticotropin-releasing factor (CRF) receptor(s) [5]. It should be noted, that hemorphins 
among opioid receptors demonstrate a higher affinity to µ-opioid receptors (MOR) with IC50 
in the µM range [60].   

All hemorphins, whatever their source, originated from the same region of the              
β-chain of Hb (residues 31-40 of bovine and residues 32-41 of human Hb), named      LVV-
hemorphin-7 [41]. It was shown the small, but significant passage of hemorphin-7 across the 
blood-brain-barrier [41], however α- and β- globin mRNAs were identified in mouse brain, 
implying the synthesis of globin in the central nervous system CNS [43].  

 Accumulating evidence was obtained for the involvement of hemorphins in the re-
gulation of nervous and immune systems function. Hemorphins modulate Ca2+/calmodulin 
(CaM)-dependent enzymes activity, including calcineurin [11, 8, 14] and inhibit enkephalin-
degrading enzymes (e.g. neutral endopeptidase (NEP), aminopeptidase N (APN), dipeptidyl 
peptidase (DPP) DPP IV [ 41, 21], and angiotensin-converting enzyme activities [34]. All 
these enzymes were reported to play an important role in the regulation of nervous and 
immune system functions [23, 27, 50, 56, 29, 57, 37, 42, 49].  

Functional interactions have been described between hemorphins on the one hand and 
β-endorphin, growth hormone, prolactin [41], substance P (SP) [46], neuropeptide Y (NPY), 
Met-ENK-Arg-Phe [40]  and CRF [5] on the other hand. It should be underscored that 
hemorphins inhibit the acute inflammatory response to SP by binding with MOR [46], share 
the pressor activity with NPY and Met-ENK-Arg-Phe [40], which results from the activation 
of sympathetic nervous system. Furthermore, intracerebroventricular (icv) administration of 
hemorphin-7 was shown to induce significant enhancement of plasma level of GH and PRL 
[41]. It has been found out that central CRF and opioid pathways are involved in the 
interaction between LVV-hemorphin-7 and brain serotonergic system [5]. Because CRF 
integrates brain multi-system responses to stress [18], the latter finding indicates that 
hemorphins being present in the hypothalamus [11], pituitary gland [25] and adrenal gland 
[20],   may also be implicated in brain multi-system response to stress.  In addition, 
hemorphin-4 and hemorphin-7 have a capacity to release β-endorphin from pituitary tissue 
[41]. It should be noted that lymphocytes can synthesize and secrete mentioned neuro-
peptides. Receptors for these peptides have been found on lymphocytes as well [19]. 

All of mentioned neuropeptides modulate hypothalamo-pituitary-adrenocortical (HPA) axis 
activity and participate in the interactions between the immune and the nervous systems [24, 17]. It 
seems very likely that hemorphins may rank to classical opioid peptides and other mentioned 
neuropeptides, and share their properties to realize the bidirectional communication between the 
nervous and the immune system and contribute to the regulation of HPA axis activity. This view is 
supported by the finding that hemorphins modulate the activity of brain and lymphocytes 
Ca2+/CaM -dependent protein phosphatase 2B (calcineurin) activity by binding to CaM, exhibiting 
a concentration-dependent biphasic response on enzyme activity [8, 14]. Calcineurin is known as a 
key enzyme in the signal transduction cascade leading to T cell activation. This enzyme controls 
gene   expression  of   several   cytokines,   including   IL-2,   tumor  necrosis factor α (TNFα)  
and    others   via   dephosphorylation    and    nuclear    translocation    of    NFATc    (nuclear  
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factor of activated T cell) family members [50]. In the brain calcineurin regulates synaptic 
plasticity and synaptic development and participates in neurotransmitters (serotonin                   
(5-HT), noradrenaline (NA), dopamine (DA), glutamate), neuropeptides and neurohormones 
(e.g. adrenocorticotropic hormone (ACTH) release [27, 56, 23].  Thus, calcineurin may 
regulate imune-neuro-endocrine interactions and hemorphins, by modulation of calcineurin 
activity, may also be involved in the regulation of HPA axis activity in physiological and 
pathophysiological conditions of the organism.  

Relationship between the processing of hemorphins and their mechanism of action on 
the brain and immune system. Earlier we proposed that hemorphins could be formed in the 
organism during physiological or pathophysiological conditions as a result of limited 
proteolysis of blood Hb or globin synthesized in nervous tissue [9]. Indeed, brain high 
molecular weight (HMW) aspartic proteinase was shown to generate LVV-hemorphin-7 from 
the β-chain of Hb by cleavage of Leu30-Leu31 and Phe40-Phe41 bonds [9].  The same 
enzyme, presented in erythrocytes membrane, was identified as a cathepsin E [30].  It has 
been shown that cathepsin D is also a good candidate for  generation of stable                   VV-
hemorphin-7 [22]. It is to be noted that brain catepsin B participates in the generation of 
hemorphin-7, LVV-hemorphin-5 and hemorphin-5 from LVV-hemorphin-7 in vitro, acting 
both as dipeptidyl carboxypeptidase and endopeptidase [4]. By using in vivo microdialysis in 
combination with electrospray mass spectrometry in vivo processing of LVV-hemorphin-7 in 
rat brain and blood was studied. Several hemorphins were formed, including hemorphins-7, in 
both brain and blood [47].  

Obviously, there is a relationship between the processing of hemorphins and their me-
chanism of action. The network of molecules introduced in Fig.1 is presented both in brain 
and in the immune system. It involves hemorphins, which modulate both brain and 
lymphocytes calcineurin activity by binding to CaM. Hemorphins, via the modulation of 
Ca2+/CaM/calcineurin signalling pathway can participate in the regulation of different cytoki-
nes production, such as IL-2, IL-6, TNF α and etc. genes expression [50]. IL-1 is also invol-
ved in that network. Since IL-1 exerts its activities often in synergy with TNF α and IL-6, and, 
moreover, each of these three cytokines is capable of inducing others, it is proposed that 
calcineurin, by participation in the production of TNFα and IL-6 [for review see Ref. 24; 3], 
can indirectly affect IL-1 production as well. In addition, β-endorphin was reported to 
regulate the production of IL-1 [19]. Because hemorphins have a capacity to induce the re-
lease of β-endorphin [41], so that they may indirectly affect the IL-1 production by release of 
β-endorphin as well. 

Cytokines, namely IL-2, IL-1, TNFα and IL-6, in turn, demonstrate bi-directional in-
teractions with proteinases [28, 1], involved both in hemorphins processing and in the me-
tabolism of cytokines [32]. Furthemore, cathepsins D, E, B were shown to play an important 
role in the regulation of the immune system function by implication in the antigen processing 
in the class II major histocompatibility complex pathway [16].  

Alzheimers disease (AD) and brain ischemia [45, 51]  are examples of CNS patholo-
gies, associated with cytokine dysfunction [7], where the signaling network is involved as 
presented in fig.1. In these pathologies high levels of hemorphins and their precursor (β-glo-
bin fragments, containing hemorphin sequence) [45, 51] were observed.   

This was correlated with increased activity of cathepsins D, E, B [36, 51] during men-
tioned diseases. The observed raise in CaM level also was consistent with a tissue region 
undergoing insult associated with degeneration [51]. Because hemorphins modulate activity 
of Ca2+/CaM dependent enzymes [11, 8, 14] by binding with CaM (Kd 2-10 nM) [12], latter 
finding points to the possible involvement of hemorphins in pathophysiology of AD and brain 
insult. This was confirmed by involvement of calcineurin in pathophysiology 
of the same diseases [35, 45, 51].
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Fig. 1. Potential interactions between the hemorphins processing and their mechanism of action in the 

brain and immune system [4]. 
 
Calpains were reported to be involved in the same CNS pathologies (AD, and brain 

ischemia) as cathepsins D, E, B [52]. Moreover, it was shown that a calpain-induced cathep-
sin B release is crucial for the development of the ischemic neuronal death [58]. Because 
hemorphins regulate µ-calpain activity [6] , it is likely that they may indirectly affect ca-
thepsin B activity, being both substrate and regulators of cathepsin B.  

 Interactions between the messengers within the nervous and the immune system: cy-
tokines, neuropeptides/hormones and neurotransmitters. Accumulated evidence suggests that 
bidirectional communication existing between the nervous and the immune systems strongly 
depends on the interactions between the messengers within those systems: cytokines, 
neuropeptides/hormones and neurotransmitters. Moreover, it has been proposed, that 
biologically active peptide are important for the manifestation of cytokines functions [7, 17, 
24]. It has been reported that one of the mechanisms by which interleukin (IL)-1 stimulates 
HPA axis on the level of brain is via the stimulation of  CRF secretion in the hypothalamus 
and potential mediators for IL-1 induced CRF secretion are NA and 5-HT [for Review see 
Ref. 17].  IL-6 and TNFα also activate HPA axis, although they are less potent that IL-1. It 
has been proposed, that cytokines released from activated immune cells may act as 
neurotransmitters affecting CNS function [24]. 

As mentioned above, hemorphins affect the production of Ang II by inhibiting ACE 
activity [ 34]; and LVV-H7, which is the most potent in inhibition of ACE activity, is equipo-
tent with Ang IV for AT4 receptor binding [39]. Because pro-inflammatory neuropeptides 
Ang II [42, 49] and SP [38] are involved in the production of IL-1, TNFα, IL-6, it is 
suggested that hemorphins by inhibition of Ang II production and SP function may negatively 
affect the synthesis of these pro-inflammatory cytokines, demonstrating anti-inflammatory 
properties.  

It is necessary to emphasize, that neuropeptides, exert multiple functions in both CNS 
and periphery either by direct binding with different receptors or by inducing/ inhibiting the 
release of other neuropeptides and, thus, indirectly affecting those neuropeptides receptors 
function. The existence of reciprocal synaptic relationships between different peptidergic 
neurons [26], co-localization of variety of neuropeptides (classical opioid peptides, SP, Ang 
II, and etc.) and their receptors in certain neurohormone/neurotransmitter (e.g.CRF, oxytocin, 
vasopressin and etc.) synthesizing neurons [44, 54], and coexistence of neuropeptides and 
neurotransmitters, as costransmitters [55], in axon terminals in different brain regions provide 
evidence for functional interactions of their receptors. 
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Hemorphins may fulfill their role as a modulators between the immune and the 

nervous system by hemorphin-neuropeptide (β-endorphin, CRF, SP, NPY, Ang II, Ang IV 
[41, 5, 46, 34, 40,  39]), hemorphin-cytokine (IL-2, TNFα [8, 13] ) and hemorphin-neuro-
transmitter (5-HT,  DA, glutamate [5, 48] ) interactions and it is suggested that molecular 
mechanisms underlying the hemorphin function involve the integrated effects of 
Ca2+/CaM/calcineurin/NFAT signaling pathway with MOR and other receptors function (e.g. 
CRF receptor(s), [5], NMDA glutamate receptors, serotonin 5-HT2A  receptors [48]).  

Very recently, it has been shown that LVV-hemorphin-7 and hemorphin-7 act as 
homeostatic agents in response to endotoxin-induced stress [13]. It is well known that many 
of the physiological effects associated with LPS are mediated by cytokines, including TNFα, 
IL-1 and IL-6, the levels of all being elevated as a result of LPS administration [15]. LPS 
administration activates HPA axis by increasing circulating concentration of adreno-
corticotropic hormone (ACTH), which, in turn, induces downstream release of glucocor-
ticoids from the adrenal cortex [15]. It should be noted, that LPS administration was reported 
to activate calcineurin as well [53].  It has been shown that LVV-hemorphin-7 and he-
morphin-7 are able to regulate HPA axis activity by decreasing in corticosterone and TNFα 
levels in plasma of rats received ip administration of LPS. Increased activity of calcineurin in 
both plasma and brain of rats, received ip LPS, was recovered by treatment with hemorphins 
[13]. Down regulatory effect of hemorphins on increased plasma levels of corticosterone in 
response to LPS, indicate that hemorphins may have a significant therapeutic potential. It is 
well established that physiological stress responses are generally considered adaptive. 
However, under chronic stress most physiological systems are negatively affected by 
prolonged exposure to glucocorticoids and cathecholamines [2] . There is clinical and 
experimenthal evidence indicating that stress hormones affect tumor pathogenesis at multiple 
levels (initiation, tumor growth, and methastasis). Therefore pharmacological interventions 
targeting immune-neuro-endocrine function at the level of the central nervous system and 
HPA axis represent a novel strategy for protecting cancer patients. 

It is to be underscored that hemorphins have a capacity to modulate the HPA axis ac-
tivity on the level of brain. The presence of hemorphins in hypothalamus, pituitary gland and 
adrenal gland, their ability to release β-endorphin from pituitary, and the contribution of 
central opioid and CRF receptors to stimulatory effect of LVV-hemorphin-7 on serotonergic 
system support our suggestion. Nevertheless, the presence of MOR on immune cells, 
peripheral neurons, and detection of hemorphins in adrenal gland cortex and medulla indicate 
that peripheral impact of hemorphins on HPA axis activity have to be considered. 

It is necessary to emphasize that hemorphins, as other members of the endogenous pro-
tective system of the organism, come into play mainly in response to pathophysiological 
conditions (e.g. stress, inflammation, cancer and etc.). In that case hemorphins, like other 
pleiotropic neuropeptides, serve as one of homeostatic factors that switch on the com-
pensatory systems in the organism. This is based on several mechanisms and by implication 
of different signaling pathways in order to recover the homeostatic disturbance.  
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