ДИЗНИЧИЬ ВИП ЧРЅПРИЗПРИБЕР ИНИЧЕПРИЯТ БЕДЕНИЧЕР ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

3-рафи-- фирыбыт, афинирунций XI, № 2, 1959 Физико-математические науки

MATEMATUKA

А. А. Талалян

О представлении измеримых функций рядами

§ 1. Известно [1], что если последовательность функций $(\neg_n(x))$, определенных на ограниченном измеримом множестве G положительной меры, образует нормированный базис в пространстве $L_p(G)$, то для любой измеримой функции f(x), определенной на G, существует ряд

$$\sum_{n=1}^{\infty} a_n \, \varphi_n \, (x),$$

который сходится по мере на множестве G к f(x), причем

$$\lim_{n\to\infty}a_n=0.$$

В связи с этим естественно возникает вопрос:

Какие последовательности функций $\{f_n(x)\}$, кроме базисов пространства L_p , обладают тем свойством, что любая измеримая функция f(x) представляется в виде ряда

$$\sum_{n=1}^{\infty} a_n f_n(x)$$
 (a_n — действительные числа),

который сходится к этой функции по мере.

Чтобы сформулировать теорему, доказанную в настоящей работе, введем следующие определения.

Определение 1. Последовательность $\{f_n(x)\}$ почти везде конечных измеримых функций, определенных на $\{a,b\}$, называется полной в смысле сходимости по мере, если для любой измеримой функции f(x), определенной на $\{a,b\}$, существует последовательность конечных линейных комбинаций функций системы $\{f_n(x)\}$, сходящаяся к f(x) по мере на $\{a,b\}$.

Определение 2. Мы будем говорить, что система $\{\varphi_n(x)\}$ почти везде конечных измеримых функций, определенных на [a,b], асимптотически ортогональна, если для любого $\varepsilon>0$ можно определить N такое, что для любых целых n>N, m>N, $n\neq m$, функции $\varphi_n(x)$ и $\varphi_m(x)$ ортогональны на некотором множестве $E_{m,n}$, мера которого больше, чем b-a-z, m. e.

$$\int\limits_{E_{m,n}}\varphi_n\left(x\right)\varphi_m\left(x\right)dx=0,\quad \operatorname{mes}E_{m,n}>b-a-s.$$

Справедлива следующая теорема.

Теорема 1. Пусть последовательность $\{f_n(x)\}$ почти везде конечных измеримых функций, определенных на $\{a,b\}$, полна в смысле сходимости по мере и пусть функции этой последовательности линейно независимы на любом измеримом множестве E меры тез $E > a_0 > 0$, где $a_0 < b - a$ некоторое фиксированное число. Тогда можно определить последовательность $\{\varphi_n(x)\}$, обладающую следующими свойствами:

1. Каждая функция $\varphi_n(x)$, $n=1, 2, \cdots$ является линейной комбинацией функций $f_1(x), f_2(x), \cdots, f_n(x)$ и, наоборот, $f_n(x)$ $n=1, 2, \ldots$ является линейной комбинацией функций $\varphi_1(x), \ldots, \varphi_n(x)$

$$\varphi_n(x) = \sum_{k=1}^n a_{n,k} f_k(x), \quad f_n(x) = \sum_{k=1}^n b_{n,k} \varphi_k(x), \quad n = 1, 2, \cdots$$

2) Система (4n(x)) асимптотически ортогональна.

3) Для любой измеримой функции $f(x)^*$, определенной на [a, b], существует ряд

$$\sum_{n=1}^{\infty} a_n \varphi_n(x),$$

который сходится κ f(x) по мере на [a, b].

Заметим, что в теореме 1 требование асимптотической ортогональности системы $\{\varphi_n(x)\}$ нельзя заменить более сильным требованием ортогональности этой системы на [a,b] в обычном смысле даже тогда, когда функции последовательности $\{f_n(x)\}$ интегрируемы с квадратом.

В самом деле. В работе [2] была построена ортогональная и нормированная система $\{f_n(x)\}$ функций, определенных на [0,1] и обладающих тем свойством, что

$$f_n(x) = b_{n-1} x^{n-1}$$
 при $x \in \left[\frac{1}{n+1}, 1\right], n = 1, 2, \cdots$ (1)

где b_n , n=0, 1, 2··· отличные от нуля действительные числа.

Так как система x^n , x^{n+1} , ..., x^{n+k} , ... для любого фиксированного n полна в пространстве $L_2[0,1]$, то система $\{f_n(x)\}$ будет полной в смысле сходимости в среднем второй степени на любом отрезке

$$\left[\frac{1}{n}, 1\right], n = 1, 2, \cdots.$$

Отсюда следует полнота системы $\{f_n(x)\}$ в смысле сходимости по мере на отрезке [0,1]. Очевидно, что $\{f_n(x)\}$ будет линейно независимой на любом множестве меры большей, чем 1/2.

^{*} f(x) может равняться $+\infty$ или $-\infty$ на множестве положительной меры.

В силу того, что система $[f_n(x)]$ ортогональна и нормировата, легко видеть, что если $\{\varphi_n(x)\}$ произвольная система, удовлетворяющая условию 1) теоремы 1 и ортогональная на [0,1], то каждая функция $\varphi_k(x)$, $k=1,2\cdots$ получается из функции $f_k(x)$ умножением на постоянное число.

Теперь можно показать, что ин одна из систем $\{\varphi_n(x)\}$ указанного вида не будет удовлетворять условию 3) теоремы 1.

В самом деле, если ряд

$$\sum_{n=1}^{\infty} c_n^* \varphi_n(x) \tag{2}$$

сходится по мере на [0,1] к f(x), то в силу (1) на отрезке $\left[\frac{1}{2},1\right]$ та же самая функция будет представляться степенным рядом

$$\sum_{n=0}^{\infty} c_n x^n,$$
(3)

сходящимся к ней по мере на $\left[\frac{1}{2},1\right]$. В том случае, когда функция f(x) почти везде конечна, из того, что ряд (3) сходится по мере на $\left[\frac{1}{2},1\right]$ к f(x), будет следовать стремление к нулю по мере на $\left[\frac{1}{2},1\right]$ последовательности $\{c_n\,x^n\}$. Тогда для любого $x_0, \frac{1}{2} < x_0 < 1$ будем иметь

$$\lim_{n\to\infty} c_n x_0^n = 0, \tag{4}$$

ибо в обратном случае для некоторого $\varepsilon_0>0$ и некоторой последовательности $n_1< n_2< \cdots < n_\kappa< \cdots$ имели бы место неравенства

$$|c_{n_k}x^{n_k}| > \varepsilon_0, x \in [x_0, 1], k = 1, 2, \cdots$$
 (5)

Но из (4) следует, что ряд (3) сходится при |x| < 1 к аналитической функции, и тогда f(x) почти всюду на $\lceil 1/2 \rceil$, 1 \rceil будет совпадать с некоторой аналитической функцией. Отсюда следует, что для рассматриваемых систем $\{\gamma_n(x)\}$ условие 3 \rceil теоремы 1 не будет выполняться.

§ 2. Прежде чем приступить к доказательству теоремы 1, сформулированной в § 1, приведем некоторые определения и теоремы работы [2].

Определение 1°. Последовательность $\{f_n(x)\}$ почти везде конечных измеримых функций, определенных на [a,b], называется полной в смысле сходимости почти всюду, если для любой измеримой функции f(x), определенной на [a,b], существует последовательность конечных линейных комбинаций функций системы $[f_n(x)]$, сходящаяся к f(x) почти всюду на [a,b].

Очевидно, что это определение эквивалентно определению 1 параграфа 1, т. е. из полноты системы $\{f_n(x)\}$ в смысле сходимости почти всюду следует нолнота этой системы в смысле сходимости по мере, и, наоборот.

Мы будем пользоваться также следующими теоремами, дока-

занными в работе [2].

Теорема 1°. Если последовательность $\{f_n(x)\}$ почти везде конечных измеримых функций, определенных на $\{a,b\}$, полна в смысле сходимости почти всюду, то она остается полной в смысле сходимости почти всюду также после удаления из этой системы любого конечного числа функций.

Теорема 2^0 . Для того, чтобы последовательность $\{f_n(x)\}$ почти везде конечных измеримых функций, определенных на [a,b], была полной в смысле сходимости почти всюду, необходимо и достаточно, чтобы для любого $\epsilon > 0$ существовало множество E такое, что тез $E > b - a - \epsilon$ и система $\{f_n(x)\}$ полна в пространстве $L_2(E)$.

В силу замечания, сделанного после определения 1° , ясно, что в теоремах 1° и 2° предположение полноты $\{f_n(x)\}$ в смысле сходимости почта всюду можно заменить предположением полноты в смысле сходимости по мере.

§ 3. В этом параграфе мы приведем доказательство теоремы 1 см. § 1).

При доказательстве мы будем пользоваться теоремами 1° и 2° и следующей леммой, являющейся частным случаем более общей леммы, доказанной в работе [1] (см. лемму 2, [1]).

Лемма 1. Пусть $\{\varphi_n(x)\}\ O, H.^*\}$ система функций, определенных на ограниченном множестве G положительной меры, полная в $L_2(G)$. Пусть $f(x)\in L_2(G)$ и f(x)=0 при $x\in E_o\subset G$. Тогда оля людого $\varepsilon>0$ можно определить функцию $F(x)\in L_2(G)$ и множество e_o , такие, что выполняются следующие условия:

$$F(x) = 0$$
 npu $x \in e_0$, $z \partial c \ e_0 \subseteq E_0$, $\text{mes } e_0 < \varepsilon$,

$$|\int_{\widetilde{G}} |f(x) - F(x)| \varphi_{\varepsilon}(x) dx| < \varepsilon, \quad k = 1, 2, \dots, n \dots,$$

для любого $e \subseteq G - e_0$, где

$$a_k = \int_{G} [f(x) - F(x)] \varphi_k(x) dx, \quad k = 1, 2, \cdots$$

Легко видеть, что из этой леммы непосредственно следует

^{*} Через О. Н. мы обозначаем ортогональные и пормированные системы.
** В частности множество E_0 может быть пустым наи иметь меру нуль.

Тогда, для любого $\varepsilon > 0$ и целого положительного n, можно определить множество $e_0 \subset G$ и действительные числа a_{n+1} , a_{n+2}, \cdots, a_m , такие, что выполняются условия:

1. mes
$$e_0 < \varepsilon$$
,

2.
$$|a_k| < \varepsilon$$
, $n+1 \le k \le m$,

3.
$$\left\| \sum_{k=n+1}^{m} a_k \, \varphi_k \left(x \right) - f \left(x \right) \right\|_{G-r_a} < \varepsilon,$$

$$4. \left\| \sum_{k=n+1}^{s} a_k \varphi_k(x) \right\|_{\varepsilon} \le +2 \|f\|_{\varepsilon}, \quad n+1 < s < m,$$

где е произвольное измеримое подмножество множества $\mathrm{G}-e_{\mathrm{o}}$.

В самом деле. Пусть n фиксированное натуральное число. Возьмем в формулировке леммы 1 $\eta > 0$ вместо ε и определим функцию $F(x) \in L_2(G)$ и множество e_0 , для которых выполняются условия α), β) и γ), где вместо ε взято η . Так как n фиксированное число, то в силу β) мы можем взять η настолько малым, что

$$\left\| \sum_{k=1}^{n} a_k \varphi_k(x) \right\|_{Q} \leq \frac{\varepsilon}{2}. \tag{3.1}$$

Одновременно мы можем предполагать, что

$$\eta < \frac{\varepsilon}{2}$$
 (3.2)

Так как в силу 2)

$$f(x) - F(x) = f(x), x \in G - e_b,$$
 (3.3)

то разложение функции f(x) - F(x) в силу полноты системы $(\varphi_n(x))$ будет сходиться в среднем на множестве $G - e_0$ к f(x). Следовательно существует натуральное число m настолько большое, что

$$\left\| \sum_{k=1}^{m} a_k \varphi_k(x) - f(x) \right\|_{\theta - e_0} < \frac{\varepsilon}{2}. \tag{3.4}$$

При этом мы можем предполагать, что

$$m > n$$
. (3.5)

Из (3.1) и (3.4) следует

$$\left\| \sum_{k=n+1}^{m} a_k \varphi_k(x) - f(x) \right\|_{G-\varepsilon_0} < \varepsilon, \tag{5.5}$$

а в силу условия γ), где $\varepsilon = \eta$, и неравенств (3.1) и (3.2) будем иметь также

$$\left\| \sum_{k=n+1}^{m} a_k \varphi_k(x) \right\|_{\epsilon} \leq \varepsilon + 2 \|f\|_{\epsilon}, \quad n+1 \leq s \leq m, \tag{3.6}$$

где e произвольное измеримое подмножество множества $G-e_{\mathbf{0}}.$

Условия 3 и 4 леммы 2 совпадают соответственно с неравенствами (3.6) и (3.5).

Условня 1 и 2 вытекают из α) и β), где вместо ϵ взято η , и из неравенства (3.2). Лемма 2 доказана.

Доказательство теоремы 1.

Перенумеруем полиномы с рациональными коэффициентами

$$P_1(x), P_2(x), \dots, P_n(x), \dots$$
 (3.7)

и возьмем последовательность положительных чисел (гд), таких, что

$$a_0 < b - a - \varepsilon_1, \quad \varepsilon_1 > \varepsilon_2 > \cdots > \varepsilon_n > \cdots$$
 (3.8)

$$\sum_{i=1}^{\infty} \varepsilon_i < +\infty, \tag{3.9}$$

где а, число, фигурирующее в формулировке теоремы 1.

Так как система $\{f_n(x)\}$ полна в смысле сходимости по мере, то в силу теоремы 2° (см. также замечание после теоремы 2°) существует множество $E_1 \subseteq [a,b]$, такое, что

$$\operatorname{mes} E_1 > b - a - \frac{\varepsilon_1}{4} \tag{3.10}$$

и на E_1 система $\{f_n(x)\}$ полна в смысле L_2 .

По предположению, сделанному в формулировке теоремы 1, а также в силу первого неравенства (3.8) и неравенства (3.10), функции системы $\{f_n(x)\}$ линейно независимы на множестве E_1 . Поэтому, ортогонализируя и нормируя эту систему на множестве E_1 , мы получим систему $\{\varphi_n^{(1)}(x)\}$ функций, определенных на [a,b] и обладающих следующими свойствами:

а) каждая функция $\varphi_n^{(1)}(x)$, $n=1,2,\cdots$ является линейной комбинацией функций $f_1(x)$, $f_2(x),\cdots$, $f_n(x)$ и, наоборот, $f_n(x)$ есть линейная комбинация функций $\varphi_1^{(1)}(x),\cdots$, $\varphi_n^{(i)}(x)$

$$\varphi_n^{(1)}(x) = \sum_{k=1}^{n} c_{n,k}^{(1)} f_k(x); \quad f_n(x) = \sum_{k=1}^{n} d_{n,k}^{(1)} \varphi_k^{(1)}(x), \quad n = 1, 2, \cdots$$
 (3.11)

в) функции $\varphi_n^{(1)}(x)$, $n=1, 2, \cdots$ на множестве E_1 образуют пол-' ную в смысле L_2 О. Н. систему:

$$\int_{E_1}^{\infty} \varphi_n^{(1)} \, \varphi_n^{(1)} \, dx = \begin{cases} 0 & n \neq m \\ 1 & n = m, \end{cases}$$
(3.12)

Применяя лемму 2 к системе $(\phi_n^{(1)}(x))$, когда $f(x) = P_1(x)$, n = 0 и $z = \frac{z_1}{4}$, мы можем определить числа $a_1^{(1)}$, $a_2^{(1)}$, \cdots , $a_{n_1}^{(1)}$ и множество $e_1 \subseteq E_1$, такие, что выполняются условия

1.
$$\text{mes } e_i < \frac{\epsilon_1}{4}$$
, (3.13)

$$2. \left\| \sum_{k=1}^{n_{i}} a_{k}^{(i)} \varphi_{k}^{(i)}(x) - P_{1}(x) \right\|_{(E_{i}-e_{i})} < \frac{\varepsilon_{1}}{4}, \tag{3.14}$$

3.
$$\left\| \sum_{k=1}^{s} a_{k}^{(1)} \varphi_{k}^{(1)} (x) \right\|_{e} \leq \frac{\varepsilon_{1}}{2} + 2 \| P_{1}(x) \|_{e}$$
 (3.15)

для всех $1 \ll s \ll n$ и для любого множества $e, e \subseteq E_1 - e_1$. Теперь рассмотрим последовательность

$$\varphi_{n_1+1}^{(1)}(x), \ \varphi_{n_1+2}^{(1)}(x), \cdots, \varphi_{n_1+k}^{(1)}(x), \cdots$$
 (3.16)

которая остается из последовательности $\{\varphi_n^{(1)}(x)\}$ после исключения первых n_1 функций.

Для последовательности (3.16) выполняются предположения теоремы 1, т. е. она полна в смысле сходимости по мере и линейно независима на любом множестве меры большей, чем $a_{\rm s}$.

В самом деле. Из условия а) непосредственно следует, что система $\varphi_1^{(1)}(x)$, $\varphi_2^{(1)}(x)$, \cdots , $\varphi_n^{(1)}(x)$, \cdots полна в смысле сходимости по мере и линейно независима на любом множестве меры большей, чем a_0 , так как этими свойствами обладает система $\{f_n(x)\}$. Остается заметить, что в силу теоремы 1° система (3.16) будет полной в смысле сходимости по мере (см. также замечание после теоремы 2°).

Предположим, что мы уже определили действительные числа $a_i^{(1)}, a_2^{(1)}, \cdots, a_{n_i}^{(1)}, a_{n_i+1}^{(2)}, \cdots, a_{n_s}^{(2)}, \cdots, a_{n_{j-1}+1}^{(j)} + 1, \cdots, a_{n_f}^{(j)}$, множества $E_1, E_2, \cdots, E_f, e_1, e_2, \cdots, e_f$ и последовательность функций

$$\varphi_1^{(1)}, \ \varphi_2^{(1)}, \cdots, \ \varphi_{n_l}^{(1)}, \cdots \varphi_{n_{f-2}+1}^{(f-1)}, \cdots \ \varphi_{n_{f-1}}^{(f-1)}, \ \varphi_{n_{f-1}+1}^{(f)}, \cdots, \\ \cdots \ \varphi_{n_f}^{(f)}, \ \varphi_{n_f+1}^{(f)}, \cdots \ \varphi_{n_{f+k}}^{(f)}, \cdots$$

$$(3.18)$$

для которых выполняются следующие условия.

A) Для любого $i, 1 \le i \le j$ имеют место соотношения

$$\operatorname{mes} E_i > b - a - \frac{\varepsilon_i}{4} \tag{3.19}$$

$$e_i \subset E_i$$
, $\text{mes } e_i < \frac{\varepsilon_i}{4}$ (3.20)

$$\left\| \sum_{k=n_{l-1}+1}^{n_{l}} a_{k}^{(l)} \varphi_{k}^{(l)}(x) - P_{l}(x) \right\|_{(E_{l}-e_{l})} < \frac{\varepsilon_{l}}{2}$$
 (3.21)

$$\left\| \sum_{k=n_{i-1}+1}^{s} a_k^{(i)} \varphi_k^{(j)}(x) \right\|_{\epsilon} \leq \frac{\varepsilon_l}{2} + 2 \| P_i(x) \|_{\epsilon}$$
 (3.22)

для всех $s, n_{i-1}+1 < s < n_i^*$) и любого множества $e, e \subseteq E_i-e_i$.

В) Функции системы (3.18) с одинаковым верхним индексом i ортогональны и нормированы на множестве E_i и ортогональны всем следующим функциям на том же множестве:

$$\int_{E_i} \varphi_n^{(i)} \varphi_m^{(i)} dx = \begin{cases} 0 & n \neq m \\ 1 & n = m \end{cases}; \quad \int_{E_i} \varphi_m^{(i)} \varphi_m^{(s)} dx = 0 \quad \begin{array}{c} 1 < i < j - 1 \\ i < s < j \end{array}$$
 (3.23)

$$\int_{E_{I}} \varphi_{n}^{(I)} \varphi_{m}^{(I)} dx = \begin{cases} 0 & n \neq m \\ 1 & n = m \end{cases}$$
(3.24)

С) Последовательность

$$\varphi_{n_{l-1}+1}^{(l)}$$
, $\varphi_{n_{l-1}+2}^{(l)}$, \cdots , $\varphi_{n_{l-1}+k}^{(l)}$, \cdots (3.25)

удовлетворяет предположениям теоремы 1, т. е. полна в смысле сходимости по мере и линейно независима на любом множестве меры большей, чем $a_{\rm o} > 0$,

Д) Обозначая последовательность (3.18) через

$$\psi_1(x), \quad \psi_2(x), \dots, \psi_n(x), \dots$$
 (3.26)

будем иметь

$$\psi_n(x) = \sum_{k=1}^n a_{nk} f_k(x); \quad f_n(x) = \sum_{k=1}^n b_{nk} \psi_k(x).$$
 (3.27)

Рассмотрим последовательность

$$\varphi_{n_f+1}^{(J)}, \ \varphi_{n_f+2}^{(J)}, \cdots, \ \varphi_{n_f+k}^{(J)}, \cdots$$
 (3.28)

которая получается из (3.25) после исключения из нее функций $\varphi_{n_{j-1}+1}^{(j)}$, $\varphi_{n_{j-1}+2}^{(j)}$, $\varphi_{n_j}^{(j)}$, которые удовлетворяют соотношениям (3.19), \cdots , (3.22), где i=j.

Мы полагаем n_o = 0.

В силу свойств С) и теоремы 1° последовательность (3.28) подна в смысле сходимости по мере и линейно независима на любом множестве меры большей, чем $a_{\rm o}$.

Применяя теорему 2° , мы можем определить множество E_{f+1} такое, что

$$\operatorname{mes} E_{j+1} > b - a - \frac{\varepsilon_{j+1}}{4} \tag{3.29}$$

н последовательность (3.28) полна на этом множестве в смысле L2.

В силу неравенства (3.8) последовательность (3.28) будет также линейно независимой на множестве E_{I+1} .

Ортогонализируя и нормируя эту последовательность на множестве E_{l+1} , мы получаем последовятельность функций

$$\varphi_{n_j+1}^{(J+1)}, \ \varphi_{n_j+2}^{(J+1)}, \dots, \ \varphi_{n_j+k}^{(J+1)}, \dots$$
 (3.30)

определенных на [a, b] и удовлетворяющих условиям

a)
$$\varphi_{n}^{(j+1)} = \sum_{k=n_{j}+1}^{n} c_{n,k}^{(j+1)} \varphi_{k}^{(j)};$$

$$\varphi_{n}^{(j)} = \sum_{k=n_{j}+1}^{n} d_{n,k}^{(j+1)} \varphi_{k}^{(j+1)}, \quad n > n_{j}+1$$
(3.31)

в) функции (3.30) образуют полную на множестве E_{f+1} О. Н. систему:

$$\int_{E_{I+1}} \varphi_m^{(I+1)} \, \varphi_n^{(I+1)} \, dx = \begin{cases} 0 & n \neq m \\ 1 & n = m \end{cases}$$
 (3.32)

Применяя лемму 2 к системе (3.30), когда $f(x) = P_{j+1}$, $z = \frac{z_{j+1}}{2}$, мы можем определить числа $a_{n_j+1}^{(j+1)}, \cdots, a_{n_{j+1}}^{(j+1)}$ и множество $e_{j+1} \subseteq E_{j+1}$ так, что будут выполняться соотношения (3.19), \cdots (3.22), где i = j + 1. Таким образом, последовательность функций

$$\varphi_1^{(1)}$$
, $\varphi_2^{(1)}$, \cdots , $\varphi_{n_{j-1}+1}^{(l)}$, \cdots , $\varphi_{n_j}^{(J)}$, $\varphi_{n_j+1}^{(J+1)}$, \cdots , $\varphi_{n_{j+1}+1}^{(J+1)}$, $\varphi_{n_{j+1}+1}^{(J+1)}$, \cdots , $\varphi_{n_{j+1}+1}^{(J+1)}$, \cdots , $\varphi_{n_{j+1}+1}^{(J+1)}$, \cdots , (3.33)

удовлетворяет условиям (3.19), ..., (3.22), где 1 < i < j + 1.

Легко видет, что последовательность (3.33) удовлетворяет также условиям В), С) и Д).

В самом деле. Условие В) непосредственно следует из (3. 23), (3.24) первого равенства (3.31) и из (3.32).

Условие С) для последовательности

$$\varphi_{n_f+1}^{(j+1)}, \ \varphi_{n_f+2}^{(j+1)}, \cdots, \ \varphi_{n_f+k}^{(j+1)}, \cdots$$
(3.34)

непосредственно следует из (3.31) и из свойства С) для последовательности (3.25), так как, в силу теоремы 1°, свойством С) будет обладать также последовательность

$$\varphi_{n_{l}+1}^{(l)}, \ \varphi_{n_{l}+2}^{(l)}, \cdots, \ \varphi_{n_{l}+k}^{(l)}, \cdots$$
 (3.35)

Выполнение свойства Д) для последовательности (3.33) следует из (3.27) и (3.31).

Так как свойства A), Б), С), Д) выполняются для j=1, то, продолжая вышеописанный процесс неограниченно, мы получаем последовательность

$$\varphi_1^{(1)}(x), \cdots \varphi_{n_i}^{(1)}(x), \ \varphi_{n_i+1}^{(2)}(x), \cdots, \ \varphi_{n_j}^{(2)}(x), \cdots$$

$$\cdots, \ \varphi_{n_{i-1}+1}^{(i)}(x), \cdots, \ \varphi_{n_i}^{(i)}(x), \cdots$$
(3.36)

почти везде конечных измеримых функций, определенных на [a, b], действительных чисел

$$a_1^{(1)}, \dots, a_{n_1}^{(i)}a_{n_1+1}^{(2)}, \dots, a_{n_j}^{(i)}, \dots, a_{n_{l-1}+1}^{(i)}, \dots, a_{n_l}^{(i)}, \dots$$

и последовательность множеств $\{E_i\}$ и $\{e_i\}$, такие, что для любого $i=1,\ 2,\ \cdots$ выполняются неравенства $(3.19),\cdots$, (3.22) и, кроме того, имеют место также условия

 A_1) функции системы (3.36) с одинаковым верхним индексом i ортогональны и нормированы на множестве E_i и ортогональны всем следующим функциям на том же множестве:

$$\int_{E_{i}} \varphi_{n}^{(i)} \varphi_{m}^{(i)} dx = \begin{cases} 0, & n \neq m \\ 1, & n = m \end{cases}, \int_{E_{i}} \varphi_{n}^{(i)} \varphi_{n}^{(j)} dx = 0 \text{ для всех } i < j \text{ и (3.37)}$$

$$n = 1, 2 \cdots; \quad m = 1, 2, \cdots;$$

В1) Обозначая последовательность (3.36) через

$$\varphi_1(X), \varphi_2(X), \dots, \varphi_n(X), \dots$$
 (3.38)

будем иметь

$$\varphi_n(x) = \sum_{\kappa=1}^n a_{n,\kappa} f_{\kappa}(x), f_{\kappa}(x) = \sum_{\kappa=1}^n b_{n,\kappa} \varphi_{\kappa}(x) \quad (n = 1, 2, \dots;).$$
 (3.39)

Из соотношений (3.37) и из неравенства (3.19) вытекает, что последовательность (3.38) асимптотически ортогональна.

Принимая во внимание также условие (3.39), мы видим, что последовательность (3.38) удовлетворяет условиям 1) и 2) теоремы 1. Для доказательства теоремы 1 нам надо доказать, что последователь-

ность (3.39) удовлетворяет также условию 3) этой теоремы, т. е., для любой измеримой функции f(x) существует ряд

$$\sum_{n=1}^{\infty} c_n \varphi_n(x),$$

который сходится по мере на [a,b] к f(x).

Напишем последовательность чисел

$$a_1^{(1)}a_2^{(1)}, \cdots, a_{n_i}^{(1)}, a_{n_i+1}^{(2)}, \cdots, a_{n_i}^{(2)}, \cdots, a_{n_{i-1}}^{(1)}, a_{n_i}^{(1)}, \cdots$$

в виде последовательности $\{a_n\}$, где числа a_n следуют по порядку их следования в первоначальной последовательности.

Условия (3.19), (3.22) системы (3.37), для системы (3.38), можно сформулировать следующим образом.

Существуют последовательности действительных чисел $|a_k|$, целых положительных чисел $\theta=n_0 < n_1 < n_2 < \cdots < \cdots$ и последовательности множеств $\{E_k\}$ и $\{e_k\}$ такие, что

$$\operatorname{mes} E_k > b - a - \frac{\varepsilon_k}{4} \tag{3.40}$$

$$e_k \subseteq E_k$$
, $\operatorname{mes} I_k < \frac{\varepsilon_k}{4}$ (3.41)

$$\left\| \sum_{i=n_{k-1}+1}^{n_k} a_i \varphi_i(x) - P_k(x) \right\|_{(E_k - \varepsilon_k)} < \frac{\varepsilon_k}{2}$$
 (3.42)

$$\left\| \sum_{i=n_{k-1}+1}^{s} a_i \varphi_i(x) \right\|_{\epsilon} \leq \varepsilon_k + 2 \|P_k(x)\|_{\epsilon}$$

$$(3.43)$$

для всех s, где $n_{k-1}+1 \leqslant s \leqslant n_k$, и для любого множества e, где $e \subseteq E_k - e_k$.

Пусть теперь f(x) произвольная почти везде конечная измеримая функция, заданная на [a, b].

Возьмем полином с рациональными коэффициентами $P_{k_i}(x)$ так, чтобы

$$\|P_{k_1}(x)-f(x)\|_{E_1} < \frac{z_1}{2}$$

тле

$$\operatorname{mes} E_1 > b - a - \frac{\varepsilon_1}{2}$$

Так как $s_k < s_1$ [см. (3.8)], то, полагая $A_1 = E_1(E_{k_1} - e_{k_1})$ в силу (3.40), (3.41) (3.42), где $k = k_1$, будем иметь

$$\text{mes } A_1 > b - a - z_1$$
 (3.44)

и

$$\left\| \sum_{i=n_{k,-1}+1}^{n_{k_i}} a_i \varphi_i(x) - f(x) \right\|_{A_i} \leq \varepsilon_1, \tag{3.45}$$

Кроме того, в силу (3.43) имеет место неравенство

$$\left\| \sum_{i=n_{k_i-1}+1}^{n} a_i \varphi_i(x) \right\|_{A_i} \leqslant \varepsilon_{k_i} + 2 \| P_{k_i}(x) \|_{A_i}, \quad n_{k_i-1} < n \leqslant n_{k_i}. \quad (3.46)$$

После этого возьмем полином $P_{\kappa_1}(x)$, $k_2 > k_1$ и множество E_2' , такие, что

$$\operatorname{mes} E_2' > b - a - \frac{\varepsilon_2}{2}$$

И

$$\|P_{k_i}(x) - \left[f(x) - \sum_{i=n_{k_i-1}+1}^{n_{k_i}} a_i \varphi_i(x)\right]\|_{E_2'} < \frac{\varepsilon_2}{3}.$$
 (3.47)

Так как $\varepsilon_{k_1} < \varepsilon_{g}$, то, полагая $A_2 = E_2' (E_{k_2} - \varepsilon_{k_2})$, в силу (3.40), (3.41), (3.42), где $k = k_2$, будем иметь

$$\operatorname{mes} A_2 > b - a - \varepsilon_2, \tag{3.48}$$

$$\left\| \sum_{i=n_{k_{1}-1}+1}^{n_{k_{1}}} a_{i} \varphi_{i}(x) + \sum_{i=n_{k_{2}-1}+1}^{n_{k_{2}}} a_{i} \varphi_{i}(x) - f(x) \right\|_{A_{3}} \leqslant \varepsilon_{2}.$$
 (3.49)

В силу (3.43), где $k=k_2$, и в силу того, что $A_2 \subseteq (E_k,-e_k)$, для любого измеримого множества $e \subseteq A_2$ будем иметь

$$\left\| \sum_{i=n_{k-1}+1}^{n} a_{i} \varphi_{i}(x) \right\|_{e} \leq z_{k_{i}} + 2 \|P_{k_{i}}(x)\|_{e}, \quad n_{k_{i}-1} + 1 < n < n_{k_{i}}. \quad (3.50)$$

Из (3.45) и (3.47) следует

$$\|P_{k_1}(x)\|_{A_1E_2^*} < \varepsilon_1 + \varepsilon_2,$$
 (3.51)

а из (3.51) и (3.50), когда $e = A_1 A_2$, учитывая, что $A_2 \subseteq E_2'$, получаем

$$\left\| \sum_{i=n_{s-1}+1}^{n} a_{i} \varphi_{i}(x) \right\|_{A_{i}A_{s}} = \varepsilon_{k_{s}} + 2 \left[\varepsilon_{1} + \varepsilon_{2} \right], \tag{3.52}$$

гле

$$n_{k_s-1} + 1 \le n \le n_{k_s}$$
 (3.53)

Из (3.44) и (3.48) следует

$$\operatorname{mes} A_1 A_2 > b - a - \varepsilon_1 - \varepsilon_2.$$

Далее, существуют полином $P_{k_0}(x)$, $k_3>k_2$ и множество E_3' такие, что

$$\operatorname{mes} E_3 > b - a - \frac{z_3}{2},$$

$$\left\| P_{k_1}(x) - \left[f(x) - \sum_{i=n_{k_i-1}+1}^{n_{k_i}} a_i \varphi_i(x) - \sum_{i=n_{k_i-1}+1}^{n_{k_i'}} a_i \varphi_i(x) \right]_{E_3} < \varepsilon_3, \quad (3.54)$$

Положим

$$A_3 = E_3(E_{k_s} - e_{k_s}),$$
 (3.55)

Так как $\varepsilon_k < \varepsilon_3$ [см. (3.8)], то в силу (3.40), (3.41), когда $k = k_3$, будем иметь

$$\operatorname{mes} A_3 > b - a - \varepsilon_3. \tag{3.56}$$

Из (3.55), (3.54) и из (3.42), где $k = k_s$, следует

$$\bigg| \sum_{i=n_{k_{i}-1}+1}^{n_{k_{i}}} a_{i} \varphi_{i}(x) + \sum_{i=n_{k_{i}-1}+1}^{n_{k_{i}}} a_{i} \varphi_{i}(x) + \bigg|$$

$$+\sum_{i=n_{k_{\mathtt{A}}-1}+1}^{n_{k_{\mathtt{A}}}} \left. a_{i} \varphi_{l}(x) - f(x) \right. \Big|_{A_{\mathtt{A}}} \!\!\! < \varepsilon_{\mathtt{A}} + \varepsilon_{\mathtt{A}_{\mathtt{A}}}.$$

В силу (3.43) для любого множества $e, e \subseteq E_k - e_k$, а следовательно и для любого множества $e \subseteq A_3$ будем иметь

$$\left\| \sum_{i=n_{k_{s}-1}+1}^{n} a_{i} \varphi_{i}(x) \right\|_{e} \leq \varepsilon_{k_{s}} + 2 \|P_{k_{s}}(x)\|_{e}; \quad n_{k_{s}-1} + 1 \leq n \leq n_{k_{s}}. \quad (3.57)$$

Из (3.49), (3.54) и (3.57) получаем

$$\left\| \sum_{i=n_{k-1}+1}^{n} a_i \varphi_I(x) \right\|_{A_2 A_3} \leq \varepsilon_{k_2} + 2 \left(\varepsilon_2 + \varepsilon_3 \right). \tag{3.58}$$

$$n_{k_x-1} < n < n_{k_x}$$

При этом из (3.48) и (3.56) следует

mes
$$A_2A_3 > b - a - (z_2 + z_3)$$
. (3.59)

Ясно, что, продолжая этот процесс, мы можем определить последовательность множеств $\{A_I\}$ и последовательность натуральных чисел $k_1 < k_2 < \cdots < k_l < \cdots$ такие, что выполняются следующие условия

$$a_1$$
) mes $A_j > b - a - \varepsilon_f$,

$$b_{i}) \qquad \left| \sum_{l=n_{k_{i}-1}+1}^{n_{k_{i}}} a_{l} \varphi_{i}(x) + \sum_{l=n_{k_{i}-1}+1}^{n_{k_{i}}} a_{l} \varphi_{i}(x) + \cdots \right|$$

$$\cdots + \sum_{i=n_{k_j-1}+1}^{n_{k_j}} a_i \varphi_i(x) - f(x) \Big|_{A_j} < \varepsilon_j,$$

$$\mathbf{c}_{1}) \qquad \Big\| \sum_{i=a_{k_{j}-1}+1}^{n} a_{i} \varphi_{i}(x) \Big\|_{A_{j}A_{j-1}} \leqslant \varepsilon_{k_{j}} + 2 \left(\varepsilon_{j-1} + \varepsilon_{j}\right) \leqslant 5 \varepsilon_{j-1},$$

для всех п, где

$$n_{k_j-1}+1 < n < n_{k_j}.$$

Положим

$$c_n = \begin{cases} a_n & \text{при } n_{k_j-1} + 1 \leqslant n \leqslant n_{k_i}, \quad j = 1, 2, \cdots \\ 0 & \text{для остальных } n. \end{cases}$$
 (3.60)

Покажем, что ряд

$$\sum_{n=1}^{\infty} c_n \varphi_n(x), \tag{3.61}$$

сходится по мере на [a, b) к f(x).

Пусть $\delta > 0$ произвольное число. Возьмем f_0 настолько большое, чтобы [см. (3.9)]

$$\sum_{k=j_0+1}^{\infty} \varepsilon_k < \delta, \tag{3.62}$$

Положим

$$A_0 = \prod_{k=J_0}^{\infty} A_k. \tag{3.63}$$

Тогда в силу а1) н в силу (3.62) будем иметь

$$\text{mes } A_0 > b - a - \delta$$
 (3.64)

Покажем, что ряд (3.61) сходится в среднем на множестве A_0 κ f(x).

В самом деле, пусть $\epsilon > 0$ произвольное положительное число. Возьмем $j_0 > j_0$ такое, что

$$5 \epsilon_{j_0-1} < \frac{\epsilon}{2}$$
 (3.65)

Положим

$$N(\varepsilon) = n_{k_h'+1} \tag{3.66}$$

Рассмотрим частные суммы ряда (3.61)

$$S_n(x) = \sum_{k=1}^{n} c_k \varphi_k(x), \qquad (3.67)$$

где

$$n > N(\varepsilon)$$
.

Возможны два случая

1. $n_{k_{j+1}-1} < n < n_{k_{j+1}}$ для некоторого $j > j'_0$,

2. $n_{kj} < n < n_{k_{j+1}-1}$ для некоторого $j > j'_0$.

Рассмотрим первый случай. Легко видеть, что в этом случае в силу (3.60) можно написать

$$S_{n}(x) = \sum_{i=1}^{n} a_{i} \varphi_{i}(x) =$$

$$= \sum_{i=n_{k_{i-1}+1}}^{n_{k_{i}}} a_{i} \varphi_{i}(x) + \sum_{i=n_{k_{2}-1}+1}^{n_{k_{3}}} a_{i} \varphi_{i}(x) + \dots +$$

$$+ \sum_{i=n_{k_{j+1}-1}+1}^{n_{k_{j}}} a_{i} \varphi_{i}(x) + \sum_{i=n_{k_{j+1}-1}+1}^{n} a_{i} \varphi_{i}(x). \quad (3.68)$$

В силу условий b_i) и c_i), где вместо j взято j+1, учитывая, что $j > j_0$, получаем

$$||S_a(x) - f(x)||_{A_0} \leqslant \varepsilon_f + 5\varepsilon_f. \tag{3.69}$$

Из (3.65) и (3.69) и из того, что $j \gg j_0$, следует

$$||S_n(x)-f(x)||_{A_0} < \varepsilon.$$

Рассмотрим второй случай. В силу (3.60) легко видеть, что в этом случае будем иметь

$$S_{n}(x) = \sum_{i=n_{k_{i}-1}+1}^{n_{k_{i}}} a_{i} \varphi_{i}(x) + \sum_{i=n_{k_{i}-1}+1}^{n_{k_{i}}} a_{i} \varphi_{i}(x) + \cdots + \sum_{i=n_{k_{j}-1}+1}^{n_{k_{j}}} a_{i} \varphi_{i}(x).$$

Следовательно в силу условия b1) имеет место неравенство

$$||S_n(x)-f(x)||_{A_j} \leqslant \varepsilon_j.$$

н, так как $A_0 \subseteq A_J$, $j \gg j_0$, то

$$||S_n(x) - f(x)||_{A_n} \leqslant \varepsilon.$$

И так, для любого $\delta>0$ существует миожество A_0 mes — a — à такое, что ряд (3.61) сходится в органем на Авк Л 2 известия Ан, серия физ. мат. наук. № 2

E4Unouth

Отсюда следует, что ряд (3.61) сходится по мере на [a, b] к f(x).

Тем самым теорема 1 доказана при том предположении, что f(x) почти везде конечная измеримая функция.

Для самого общего случая, когда f(x) произвольная измеримая функция, доказательство аналогично и здесь мы его не приводим.

Институт математики и механики АН Армянской ССР

Поступило 17 П 1958

Ա. Ա. Թալալյան

ՉԱՓԵԼԻ ՖՈՒՆԿՑԻԱՆԵՐԸ ՇԱՐՔԵՐՈՎ ՆԵՐԿԱՅԱՑՆԵԼՈՒ ՄԱՍԻՆ

THUPUPUL

U ա 5 d ա u n e d 1. [a,b] ճատվածի վրա որոշված, ճամարյա ամենուրեք վերջավոր, չափելի ֆունկցիաների $\{f_n(x)\}$ ճաջորդականությունը կոչվում ե լրիվ ըստ չափի զուգամիտության իմաստով, եթե [a,b] ճատվածի վրա որոշված ցանկացած f(x) չափելի ֆունկցիայի ճամար գոյություն ունի $[f_n(x)]$ սիստեմի ֆունկցիաների վերջավոր գծային կոմբինացիաներից կազմված ֆունկցիաների ճաջորդականություն, որը զուգամիտում ե f(x)-ին ըստ չափի [a,b] ճատվածի վրա։

Հեշտ է տեսնել, որ եթե ֆունկցիաների սիստեմը լրիվ է L₂[a, b]-ում, ապա նա լրիվ կլինի նաև ըստ չափի զուդամիտության իմաստով, րայց, ինչպես ցույց է տրված [2]-ում, ծակառակը ճիշտ չէ։

U ա հ մ ա ն ու մ 2. Մենք կասենք, որ ճամարյա ամենութեր վերջավոր, չափելի ֆունկցիաների $\{\varphi_n(x)\}$ ճաջորդականությունը ասիմպառառրեն օրթոգոնալ և [a,b]-ում, եթե ցանկացած $\varepsilon>0$, դրական թվի ճամար կարելի և որոշել N բնական թիվ այնպես, որ ցանկացած ամբողջ ու դրական n և m թվերի ճամար, որտեղ n>N, n>N և $n\neq m$, $\varphi_n(x)$ և $\varphi_m(x)$ ֆունկցիաները օրթոգոնալ են մի $E_{m,n}$ թազմության վրա, որի չափը ավելի մեծ և, բան $b-a-\varepsilon$ -ը, այսինըն՝

$$\int\limits_{E_{n,\,m}}\varphi_{n}\left(x\right)\varphi_{m}\left(x\right)dx=0,\quad \operatorname{mes}E_{n,\,m}>b-a-\epsilon;$$

Ներկա աշխատության մեջ ապացուցվում է հետելալ Թեորեմը.

Թևսրեժ. Գիցուբ, [a,b] հատվածում որոշված, ճամարյա ամենուրհը վերջավոր, չափելի ֆունկցիաների $|f_n(x)|$ ճաջորդականությունը լրիվ է, ըստ չափի զուգամիտության իմաստով, և այդ ճաջորդականության ֆունկցիաները գծորեն անկախ են ցանկացած E չափելի բազմությունների վրա, որոնց չափը մեծ է, բան $a_0>0$ ֆիբս թիվը։ Այդ դեպքում կարելի է որոշել $\{\varphi_n(x)\}$ ճաջորդականությունը, որն ունի նետևյալ ճատկությունները՝

1. Յուրաբանչյուր $\varphi_n(x)$, $n=1,2,\cdots$ ֆունկցիա ճանդիսանում և $f_n(x),\cdots,f_n(x)$ ֆունկցիաների գծային կոմբինացիա և ճակառակը՝ յուրաբանչյուր $f_n(x)$ ֆունկցիա ճանդիսանում և $\varphi_1(x),\varphi_n\cdots,\varphi_n(x)$ ֆունկցիաների գծային կոմբինացիա։

$$\varphi_{n}(x) = \sum_{k=1}^{n} a_{nk} f_{k}(x); \quad f_{n}(x) = \sum_{k=1}^{n} b_{n,k} \varphi_{k}(x),$$

(φ_u(x)) ճաջորդականությունը ասիմպառաիկ օրթոգոնալ k;

3. Ցանկացած f(x) չափելի ֆունկցիայի ճամար, որը որոշված և |a,b| - ում, գոյություն ունի

$$\sum_{n=1}^{\infty} a_n \, \varphi_n \, (x)$$

cmpp, npp [a, b] humidudned pum suchh gnegudhuned k f(x)-hh:

Ապացուցվում է նաև, որ նույնիսկ այն դեպքում, հրա ֆունկցիաները պատկանում են $L_2[a,b]$ դասին, Թևորեմը ընդհանրապես Ֆիջա չէ, եխե 2) պարմանում ասիմպաստիկ օրխողոնալությունը փոխարինենք օրխոդոնա-լությամբ [a,b] հատվածում սովորական իմաստով։

ЛИТЕРАТУРА

- 1. Талалян А. А. О сходимости по мере рядов по базисам пространства L_p . Известия АН Армянской ССР, серия физ.-мат. наук, т. 10, № 1 (1957).
- Талалян А. А. О сходимости почти всюду подпоследовательностей частных сумм общих ортогональных рядов. Известия АН Армянской ССР, серия физ.-мат. наук, том 10, № 3 (1957).