по подбору условий для массового укоренения растений.

Таким образом, в результате проделанной работы нами отработаны условия введения в изолированную культуру и массового размножения растепий переступня.

ЛИТЕРАТУРА

- 1. Артамонов В.И. Редкие и исчезающие растения. М., 1989.
- 2. Березнеговская Л.Н., Гусев И.Ф., Дмитрук С.Е., Смородин А.В., Смородин В.В., Трофимова Н.А., Шмыкова Н.А. Культура тканей и клеток алкалоидных растений. Томск, 1975.
- 3. Григорян Г.Х., Паносян А.Г., Оганесян Н.М. В кн.: Ավանդական ժողովրդական բժշկություն ժառանգությունը և հեռանկարները, Երևան, 1992.
- 4. Катаева Н.В., Бутенко Р.Г. Клональное микроразмножение растений. М., 1981.
- 5. Красная книга Армянской ССР. Растения. Ереван, 1989.
- 6. Оганесян Н.М., Меликян И.Е., Григорян В.Х., Мириджанян М.И., Асрян К.В., Батикян И.Г., Абрамян А.К., Маликоян С.А. В кн.: Ավանդական ժողովրդական բժշկություն ժառանգությունը և հեռանկարները, Երևան, 1992.
- 7. *Паносян А.Г.* В кн.: Սվանդական ժողովրդական բժշկություն ժառանգությունը և հեռանկարները, Երևան, 1992.
- 8. *Тер-Саакян С.Я.* В кн.: Սվանդական ժողովրդական բժշկություն ժառանգությունը և հեռանկարները, Երևան, 1992.

Поступила 4.Х.1994

Биолог, журн. Армения, 1-2 (49), 1996

УЦК 595.371

РАЗМЕРНО-ВЕСОВАЯ ХАРАКТЕРИСТИКА И ЭНЕРГЕТИЧЕСКИЙ ЭКВИВАЛЕНТ МАССЫ ГАММАРИД ОЗЕРА СЕВАН И ЕГО ПРИТОКОВ

Т.М.МАНУКЯН

Институт гидроэкологии и ихтиологии НАН Армении, 378610, г.Севан

Озеро Севан - гаммаризы - линейные размеры - эпергетический эквивалент массы.

В комплексных экологических и эколого-физиологических исследованиях экосистемы озера Севан одним из необходимых компонентов является изучение грансформации веществ и энергии разными членами сообщести данных животных. Определенную роль в этих сообществах играют гаммариды Gammarus (рачкибокоплавы), представленные в бассейне озера двумя видами - G.lacustris и G.pulex. Пля познания продукционных процессов в их популяциях, особенностей роста, питания, дыхания важно располагать данными о весе животных и энергетической ценности их массы. Одним из универсальных способов определения массы животных без непосредственного взвенивания является расчет по линейным размерам. Известно [1,2], что зависимость массы тела от его длины выражается степенной функцией вида:

 $W = aL^h$

причем параметры уравнения (а и b) характеризуют отдельные виды и популянии животных. Нашей задачей явилось выяснение значения этих параметров для популяций

гаммарид оз. Севан и его притоков, а также определение энергетической ценности (калорийности) рачков разных половозрастных групп.

Материал и методика. Материалом служили сборы животных бентоса, собранные дночернателем Петерсона с илощадью захвата 0,025 м² на разных глубинах. Животных промеряли под бинокуляром, определяли пол. длину с точностью до 1 мм, икроносных самок освобождали от икры, подсчитывали количество икринок. Взвешивали на торэмонных весах с точностью до 0,1 мг.

При расчетах уравнений связи между массой и длиной тела использовали программу регрессионного анализа. Коэффициенты уравнения регрессии вычисляли методом наименьших квадратов [6]. Статистическую обработку материала проводили на ЭВМ-28. В работе учтены лишь те уравнения, которые анпрокеммировали конкретную зависимость с наивыещими значениями коэффициентов корревяции.

Для определения калорийности разных популяций гаммарид животных разбивали на ряд размерных групп - от особей дляной 2-4 мм до имеющих максимальный размер. У половозрелых животных (начиная с 6-8 мм) определяли калорийность самок и самцов раздельно. Определение калорийности проводили методом мокрого сжигания (биохроматное окисление) [5], в трех повторностях для каждой размерной группы. Оксикалорийный коэффициент был принят равным 4,0 кал/мг, О, как это рекомендовано Гигиняком [3].

Результаты и обсуждение. Установлено соотношение липейных размеров и массы тела для двух исследуемых видов амфинод *G.lacustris* и *G.pulex*. Получены степенные уравнения, параметры которых приведены в табл. 1.

Статистическая обработка показала довольно высокую точность расчета параметров уравнений. Высокие значения коэффициентов корреляции (г) (0,94-0,98) подтверждают наличие тесной связи между IgW и IgL (рисунки не приводятся). Величины показателя степени "b" у исследованных понуляций изменялись в пределах 2,39-2,59. Полученные уравнения свидетельствуют об отрицательной аллометрии роста (b<3) у обоих видов гаммарид.

Как видно из табл. 2, калорийность у гаммарид из исследуемых популяций

Таблица 1. Параметры уравнения зависимости массы (W, Mr) от длины тела (L, MM) для Gammarus spp.

Вид, популяция	Iloxavatens									
	H	O,	B	O,	t	a				
От. Севан,	0,05	0,0073	2,51	0,037	0,98	160				
G.lacustris										
р.Газарагет	60,06	0,115	2,39	0,051	0,96	162				
G.lacustris										
р. Аргичи,	0,05	0,072	2,52	0,034	0,98	210				
G lacustns										
р.Макенис,	0,04	0,092	2,54	0,046	0,94	41-				
G.pulex										

Таблица 2. Калорийность различных популяций G.lacustris и G.pulex (кал/мг сух. в-ва).

Вед,	Размерные классы (мм)									
	4-5.9	6-7,9	8-9.9	10.11.9	12-13.9	14-15,9	16-17,9			
O3. Cenan, A.* G.lacustris & *	2,93	4,32/3,95	3,98/3,91	3,78/3,53	3,35/3,35	2,81/3,33	- /2,77			
p. l'anaparet O. lucusteis -	3,15	3,77/3,91	3,91/3,99	3,73/3,70	3,13/3,55	3,20/3,36	- /2,93			
р. Аргичи, *** G.lacusteis Y *	3,35	4,40	3,78/3,56	3,53/3,70	3,30 3,75	3,15/3,25	-/3.15			
p.Makenne, G.pulex	2,83	3,75/3,71	3,40/3,21	2,50/3,05	2,72/2,91	2,40 2,80	- /2,60			

изменялась пезначительно. В целом значения калорийности сходны с данными, полученными для различных ракообразных [4,7].

Максимальные значения калорийности отмечались у особей с наименьшими линейными размерами и у наиболее крупных "старых" особей, которые для первых составляли от 2,93 до 3,35 в зависимости от популяций *G.lacustris* и 2,83 кал/мг сух. в-ва - для *G.pulex* из р.Макенис. Для "старых" особей *G.lacustris* значения калорийности составляли 2,77 - 3,15, а для *G.pulex* - 2,0 кал/мг сух.в-ва. К моменту наступления половозрелости животных калорийность достигает максимальных значений у особей размерами 8-10 мм в популяции *G.lacustris* из р. Гаварагет и у 6-8 мм особей прочих исследованных популяций, для *G.lacustris* эта величина составляет 3,19-4,4, а для *G.pulex* из р. Макенис - около 3,7 кал/мг сух.в-ва.

Можно предположить, что с началом репродуктивного периода рачков питательные вещества расходуются на продупирование половых продуктов, в связи с чем и происходит постепенное спижение калорийности рачков обоих полов, достигающее, как показано выше, минимальных значений у особей старших возрастов, у которых, по-видимому, резко снижена интенсивность наконления органического вещества.

Сравнительный анализ калорийности рачков различных популяций показал, что наиболее высокие се значения отмечались у *G.lacustris* (среднее значение калорийности - 3,6 кал/мг сух.в-ва). Более низкие значения калорийности (в среднем 2,9 кал/мг сух.в-ва) отмечаются у *G.pulex* из р.Макенис, что, по-видимому, является видовым признаком.

ЛИТЕРАТУРА

- 1. Винберг Г.Г. Успехи соврем. биол., 6, 274-293, 1966.
- 2. Винберг Г.Г. Журн.общ. биол., 32, 6, 714-722, 1971.
- 3. Гигиняк Ю.Г. Общие основы изучения водных экосистем. Л., 1979.
- 4. *Лупнова Е.И*. Физиология морских животных. Тез. докл. Всесоюзн. конф., Мурманск, 1989.
- 5. Остапеня А.П. ДАН БССР, 9, 4, 213-276, 1965.
- 6. Ужнов А.А. Журн. общ. биол., 37, 1, 71-86, 1976.
- 7. Шерстюк В.В. Гидробиол. журн., 7, 6, 98-103, 1971.

Поступила 13. VIII 1993.