УСТАНОВЛЕНИЕ ПДК ТЯЖЕЛЫХ МЕТАЛЛОВ В ОРОСИТЕЛЬНОЙ ВОДЕ

К. В ГРИГОРЯН

Ереванский государственный университет, кафедра экологии и охраны природи

На основе изучения активности ферментов как основного диагностического показателя разработаны ПДК меди, свинца, никеля, марганца и молиблена в оросительной воде.

Ֆերանենաների իրունը օգտագործելով արպես առագիյ չրերում մշակվել են պզնձի, կապարի, հիկելի, մահդանի և մու լիրդենի եԹՍ-եւ

Making a close study of enzymes activity, as the basic diagnostical index, the MPC of copper, lead, nickel, manganese and molybdenum in irrigating water are worked out.

Вода оросительная-металлы тяжелие эферменты

Для контроля за уровнем загрязнения оросительных вод и разработки природоохранных мероприятий исобходимо разработать предельно допустимые концентрации тяжелых металлов и других техногенных агентов в инх. Настоящая работа посвящена изучению этого вопроса.

Материал и методика. Исследовали воды бассейнов рек Дебед и Вохчи. В вачества основного критерия для установления ПДК тяжелых металлов в оросительной вода использовали активность ферментов почв. С этой целью вспользовали также градации степени загрязиенности почв по активности ферментов и содержанию тяжелых металлов [3, 6]. Чувствительность растений к тяжелым металлам (металлиустойчность) определяли фенологическими наблюдениями за ростом и развитием сельскохозяйственимх культур и методом корисвого теста, предложениям Унлкинсом [6]. Содержанно тяжелых металлов определяли итомно-абсорбционным, активность ферментов—упифицированиям методом [2].

Результаты и обсуждение. Установлено, что при определении поливных качеств и прригационных свойств вод, загрязненных промышленными отходами и выбросами, уже принятыми методами получаются в высшей степени удовлетворительные результаты и без специальных мер можно использовать эти воды для орошения почв. А практика орощения показывает, что воды, загрязненные отходами и выбросами промышленных предприятий, отрицательно действуют на состав и свойства почвы, на рост и развитие сельскохозяйственных культур [3]. В настоящее время уже известны многие категории промышленных сточных вод, использование которых недопустимо в орошаемом земледелии. С помощью существующих методов полностью оценть ирригационные свойства загрязненных вод не представляется возможным, так как при этом не учитывается содержание техногенных агентов в них.

Сокращения: ПДК ты предельно допустимые конпентрации тяжелых металлов-

При рассмотрении результатов орошения водами, загрязненными промышленными отходами, трудно выделить влияние какого-вибудьолного элемента на активность ферментов почв, так как их аккумуляния, количественное перераспределение и цействие зависят от многих. факторов: химического состава и ирригационных свойств оросительных вод, физических и физико-химических свойств почв, специфичных особенностей тяжелых металлов и их взаимодействия. Учитывая вышесказанное, величину В устанавливали с помощью модельных опытов.

Исследования проводили на почве с неодинаковым содержанием тумуса, химическим составом, различной буферностью и кислотностью. В чашках Петри к 100 г почвы добавляют от 1 ло 10 мг тяжелых металлов, 2 мл толуола в качестве антисептика, увлажияют до 80% от полной влагоемкости. После высушивания в них определяют активность ферментов [2, 4]. Концентрации растворов соединений тяжелых металлов рассчитывают с учетом их содержания, выражаемого и кларках выпалонных (незагрязненных) почвах, и увеличивают в 5—30 раз в соответствии с уровнем загрязнения ночв и нормами использования загрязненных оросительных вод. Результаты опыта подвергают математической обработке методом вариационной статистики. Каждый вариант опыта проводят в 2-кратной повторности.

Для определения величины К в листьях возделываемых сельскохозяйственных культур устанавливают те пределы содержании тяжелых
металлов, при которых наблюдается их токсическое действие, проявляощевся и физиологических и морфологических изменениях—хлорозе,
некрозах, морщинистости и искривленности листовых властинок, снижении биологической продуктивности. Сотая часть установленного содержания нормируемого элемента в листьях, при котором наблюдается
токсическое действие, соответствует коэффициенту чувствительности
растений к тяжелым металлам.

Орнентиром служат также результаты модельных опытов по установлению ингибирующего действия тяжелых металлов на биохимическую активность почв и рост проростков различных культур [4, 6].

В водах, используемых для орошения коричненых лесных остепненных, пойменно-луговых почв и выщелоченных черноземов АрмССР, нами установлены ПДК тяжелых металлов (табл.).

Пример. В коричневых лесных остепненных почвах активность инвертазы синжается на 20% под влиянием 19 мг меди (B=19 мг/кг). Все гектарной площади почвы составляет 2740000 кг (Д·А=0,00137 кг/см³. 2000000000 см³=2740000 кг). При содержании меди в листьях групи, равном 100 мг на кг сухого вещества, наблюдается отрицательное действие ее Следовательно, коэффициент чувствительности К равен 100/100. Средняя оросительная норма в СССР составляет 5000 м³ (М 5000000 л). Однако с этой целью необходимо непользовать оросительные нормы, установленные для конкретных почв и отдельных культур. Подставляя получениме величины в формулу определяют НДК мели в оросительной воде

ПДК_{си} =
$$\frac{19 \text{ мг кг} \cdot 0.00137 \text{ кг/см}^4 \cdot 20000000000 \text{ см}^4 \cdot 1}{50000000 \text{ л} \cdot 5} = 2.1 \text{ мг л}.$$

В качестве основного критерия для установления ПДК тяжелых металлов в оросительной воде мы использовали показатели активности ферментов почв, при этом досконально изучив связь и взаимодействие между компонентами биогеоценоза (оросительная вода- почва растение).

Установлено, что активность ферментов почв зависит от их биогенности, содержания органического вещества, физических и физико-химических свойств. Обнаружена положительная корреляция между активностью инвертазы, фосфатазы и содержанием гумуса, питательными элементами и урожаем сельскохозяйственных культур [1]. Причем активность инвертазы и фосфатазы закономерно меняется в зависимости от рельефа, угодий, применяемых агротехнических мероприятий. Активность указанных ферментов является характерным показателем генетических гипов почв, степени их плодородия, эродированности, засоленности, солонцеватости и загрязненности.

На основании сравнительного изучения биологической активности орошаемых почв выявлено, что активность ферментов в значительной степени зависит от химического состава и ирригационных свойств оросительных вод. Все это дает основание рассматривать активность ферментов орошаемых ночи в качестве диагностического показателя степени загрязненности вод и соответственно основания для установления ПДК тяжелых металлов в них.

Результаты многочисленных поленых и лабораторных исследований и статистическая обработка полученных данных позволили разработать градацию степени загрязненности орошаемых почв тяжелыми металлами по активности инвертазы и фосфатазы [3, 5]. Согласно этой градации, к слабозагрязненным отнесены почвы, в которых активность фосфатазы по сравнению с незагрязненным уменьшается на 25%, инвертазы на 20%, к среднезагрязненным соответственно на 25—45% и 20—50%, к сильнозагрязненным болсе чем на 45 и 50%.

Учитывая, что в загрязненных почвах под влиянием тяжелых металлов, содержащихся в оросительной поде, активность ферментов синжается, концентрацию пормируемого вещества, приводящую к синжению активности фосфатазы на 25% и инвертазы на 20%, следует считать подпороговой, т. е. предельно допустимой концентрацией. Следовательно, при определения ПДК тяжелых металлов в оросительной ноде в первую очередь необходимо учитывать в ней их содержание, приводящее к снижению активности инвертазы почв на 20%, или фосфатазы на 25% в течение 5 лет.

ПДК $_{\rm cu}$ в мил вычисляют по формуле: ПДК $_{\rm cu}=\frac{{\rm B.\, Д.\, A.\, K.}}{{\rm M}\cdot 5}$ где ${\rm B-\, co}$ содержание тяжелого металла, приводящее к снижению активности инвертазы на 25% или фосфатазы на 20% и поступающее в почву в течение 5 лет (мг/кг), ${\rm Д-\, o}$ объемный нес почвы (кг/см³), ${\rm A-\, o}$ объем гектарной площали почвы на глубине 20 см (см³). ${\rm K-\, ko}$ эффициент чувствительности растений по отношению к тяжелым металлам, ${\rm M-\, op}$ осительная норма (л). ${\rm A-\, Bec}$ гектарной площали почвы (кг).

ПДК чжелых мегаллов в оросительной воде

Почна	Культура	Cu	РЬ	Ni	- Mn	.Mo
Коричненая яесная остепненная	Груша Яолоня Персик Виноград Перец Томаты Баклажан	2.1 4.2 3.2 4.2 1.3 2.5 2.1	1.0 0.6 1.3 1.0 0.8 1.2 1.9	1.8 2.4 2.2 2.6 1.0 2.3	3.1 5.6 3.6 3.9 2.0 7.0 6.2	1.2 0.9 1.4 1.7 0.8 1.2 9.0
Понменно-лугован	Груша Яблоня Персик Виноград Перси Томаты Баклажан	1.5 3.6 2.3 3.0 0.9 1.8 1.5	0.9 0.9 0.6 0.5 0.7	1.4 1.8 1.6 2.0 0.7 1.7	2.4 4.4 2.9 3.1 1.5 5.5	0.8 0.9 0.6 0.8 0.5 0.6
Чернолем вышело- кынкэм	Груша Яблоцч Персик Виногряд Перец Томаты Баклажон	2.7 5.4 4.1 5.4 1.0 3.2 2.7	2,2 0,0 2,0 1,5 1,8 2,9	2.1 2.8 2.5 3.1 1.1 2.7 1.7	4.0 1.7 5.3 2.5 9.4 7.9	1.9 1.5 1.5 1.2 1.2 1.9

Авалогично определяют ПДК других тяжелых металлов в ороси-тельной воде.

Разработанные ПДК тяжелых металлов можно широко применять в практике орошения для контроля за состоянием загрязненных промышленными отходами оросительных вод и разработки природоохранных мероприятий.

ЛИТЕРАТУРА

- 1, Гил. г. А. Ш. Ферментативная активность почи Армении. Ереван, 1974.
- 2 Гантан А. Ш. Почвовеление, 2, 1978.
- 3. Григорян К. В., Галстян А III Почвоведение. 3, 1979
- 4 Г. исорян К. В. Биолог, ж. Армении, 35, 8, 1982.
- 5 Григорян К. В., Галетян А. Ш. Почноведение. 8, 1986
- Григорял К. В., Каракешиния Г. М. Биолог ж. Арменин, (І. 1. 1988)

Поступило 20.1 1989 г.