ЖИЦИМ ЗИДПРЭПРИЧЕР • КРАТКИЕ СООБЩЕНИЯ

Баолог. ж. Армения. № 12.(42),1989

УДК 581.522 4

СЕЗОННОЕ ИЗМЕНЕНИЕ СОДЕРЖАНИЯ ХЛОРОФИЛЛА В ПОБЕГАХ ДРЕВЕСНЫХ ИНТРОДУЦЕНТОВ КАК АДАПТИВНЫЙ ПРОЦЕСС

В. В. КАЗАРЯН, Л. Н. ОГАНЕСЯН Институт ботаники АН АрмССР, Ереван

Древесные интродуценты-адиптация-хлорофила.

Наличие хлорофилла в стеблях растений с давних пор привлекало внимание исследователей [16]. В вопросе о роли хлорофилла мнения расходятся: предполагается, что он стимулирует ростовые вещестна [11], принимает участие в гидролизе крахмала [1], является запасным веществом [3] и, наконец, ассимилирует внутритканевую углекислоту [11].

В лаборатории физиологии растений Института ботаники АН Арм. ССР было установлено, что основная роль указанных зеленых пластид заключается в ассимиляции внутритканевой и поступающей через чечевички атмосферной углекислоты [5], в результате фотосинтеза внутритканевых зеленых властид гравинистых активируется дыхание живых элементов флоэмы и в связи с этим усиливается транспорт С¹⁴ сазаров [7]. Выявлена прямая корреляция между фотосинтезом стеблевого хлорофилла и скоростью транспорта воды через ситонидные грубки ксилемы [9]. Эта роль хлорофилла болес активно проявляется у травянистых форм, стебли которых гораздо богаче, по сравнению с древесными и кустарниковыми видами, зелеными пластидами [8].

Внелистовой хлорофилл характерен и для древесных форм [10]. На основании литературных и собственных данных Э. П. Кецхонели установила, что наличие хлорофилла характерно для всех тканей стебля листопадных и всчнозеленых видов. Вместе с тем показано, что количество зеленых пластид в коре колеблется в течение года с максимумом содержания его в период зимы. Кажется парадоксальным, что в побегах древесных содержание хлорофилла выше зимой, когда исключено передвижение ассимилятов [2, 13]. Однако, как было установлено в дальнейшем, количественное изменение хлорофилла в побегах древесных связано с осениим листопадом и весенним формированием новых листьев. Перед листопадом он перемещается из листьев в стеблевые ткани, главным образом, и феллодерму, а весной повторно используется для зеленения формирующихся листьев [6]. Таким образом, у дре-

весных хлорофилл подвергается повторному использованию, как и рязважнейших элементов минерального питания.

Отток аслимильтов из стареющих и опадающих листьев является эволюнионно приобретенной особенностью растеяни, а его неодинаковое проявление ; различных превесных интролументов рассматривается как степень их адаптации в новых условиях существования [4]. В связи с этим осеннее перемещение хлорофилла из листьев перед их овалом следует также рассматривать как приспособительную реакцию, я по величине амалитуды осеннего и несеннего количественного язменения хлорофилла в побегах превесных интролументов, на всей вероятности, можно составить определенное представление о степени их адаптации.

Мат ж. и методика. Для экспериментального подтверждения данного предпол ложения пами были вредприняты опыты с некоторыми превесными интролументами, преизрастающими и Ереванском ботаническом саду АН АрмССР.

Изучаемые питродущенти мы разделили на три группы — пилы, разпространенные на Клак —— са посто — her of soch et Mey. (ду круппо ока и ок пила). Collis ca casico W III (—ркае класкови) —— Изучаемий А. Dolnen. (ереза Латвинов и 2 пилы, принарас ают и — езопрей ком части СССР — Изича Заеть Рай (изым тладков). Асег —— (ка и потарский), Олегов тобит —— (пуб перешлатый); 3. в гом, оби, ком не — 10 го-Востой и и — Средней Азаи — Сла Іда — очата — Оли. (казалын принамана), Раргат в —— 1 ластре (гом за Белле), и мях петот гаругіва (п.). В Нега 161 го оветия бум околи).

В люстых и коре перечисленных ингродуцентой изучали динамику количественното изучали хлорофилая. Анализм проводили починая с 10.1X через каждые двадцать дини вилоть по пожелтения попаления листьев (20.X). Содержание общего клорофилыя определяли спектрофотометрически по методу Маккини [14] Привеченные давиме видинотея усредненными показателями по трем растениям.

Резильтаты и обсуждение. Выявленная общая тенденныя количественного изменения клорофилла в коре и листьях перед их опаденном у интролуцентов разного географического происхождения не идентична. Наибольная убыль клорофилла из листьев и увеличение его содержания в коре к периоду листонада имеет место у интродуценты кавказского и среднеазнатского происхождений, вроизрастающих примерно в однажовых кологических условиях. У представителей европейской дендрофноры обнаруживается иссколько иная картина. У этих видов из листьев и кору перемещается меньшее количество кларофилма, основная его масса остается в опавших листьях. Эта закономерность наглядии пидна в приведенной таблице.

г. бличные данные кляюстрируют динамику количественного изменения хлорофилла и листьях и коре растений и период подготовки к оссинему листопаду. У всех исследованных раслений не отмечено полного оттока хлорофилла из листьев. Подобная нецелесообразная реакция, видимо, связана с рядом неблагоприятиих висиних и внутрешних факторов, вызывающих нарушение пормального хода подготовки листьев к опаденню. К внутрешним факторам могут быть отнесены прекрашено синтеза ауксинов и листья, ускоряющих оор, зование отделяющего слоя на перешках листья, истья раннее подавление гранспорта ассимилятов на перешку в связи с пергили и затуханием процессов

Динаника количественного изменения содержания хлорофилла в коре и листьях

Группа интролуценто	определения определения	Содержание хлороф нала			
		янстья		кора	
		мад сух. н-па	41	мг/г сух. а-ва	96
Кавхазская	10 09 01 10 20 10	1.33 1.05 0.6	100 78 45	0.16 0.35 0.47	100 219 293
Нэ европейской части СССР	10,19 01,19 20,10	1.6 1.4 0.96	100 87 60	0.13 0.25 0.33	100 192 253
И з Средне й Азии	10.09 01.16 20.10	1.0 0.77 0.63	100 77 63	0.13 0.23 0.4	100 177 307

жизнедеятельности клеток листовой пластинки. Хотя эти предположения нуждаются в экспериментальной проверке, бесспорным остается то обстоятельство, что большое количество гесимилятов [4] и клорофилла в опавиных осенью листьях является проявлением слабой адаптаин растений к данным условиям произрастания. Ярким свидетельством тому представляются различия в содержании хлорофия из в листьях и коре растений, интролуцированных из различных географических широт. Так, в листьях представителей дендрофлоры европейской части СССР, которые менее адаптированы к условиям Ереванского бо**танического сада**, перед опадом остается больше хлорофилла, чем у аборигенных видов.

Все эти данные в конечном счете дают основание заключить, что одим из физиологических ноказателей адаптации интродуцентов к ноным условиям существования следует рассматривать степсиь перемещения из листьев перед их осенням опадением не голько ассимилятов [4], но и хлорофилла. У видон, лучше приспособленных к данным усмовиям, основная масса листоного хлорофилла, полвергаясь распаду на подвижные компоненты, перемещается к побегам и в клетках ветвей ресинтезируется с образованием новых молекул обновленного клорофилла.

ЛИТЕРАТУРА

- Александров В. Г., Александрова О. Г. Бот журн., 28, 6, 223—235, 1943.
- 2. Александров В. Г., Савченко М. И. Тр. бот. ин-та им. В. Л. Комарова. АН СССР. 8, 15-82, M.-J., 1950,
- Гюббенет Е. Р. Растение и хлорофила, 247, М.—Л., 951.
- 4. Казарян В. В. Бюлл, Гл. бот, сада, 3, 79-82, 1979.
- 5. Казарян В О. Тр. Всесоюз, паучи, тех совещ, по применению раднояктивных и стабильных изотопов и излучение в народном хоз-ве, 92-97. М., 1985.
- Казарян В. О. Авунджен Э. С. Докл. АН СССР. 101. 1, 181—183, 1955.
- . Казарян В. О., Оганян А. С., Геворкян Г А. Физиол. раст., 33, 4, 637—642—1986.
- 8. Казарян В. О., Михаелян Г. В. Докл. АН АрмССР, 85, 1, 43-48, 1987.
- 9. Казарян В. О. Оганян А. С. Биолог. ж. Армении. 40, 1, 5—10. 1987.
- 10. Кецхолели Э. Н. Автореф. докт. дисс., 77. Тбилиси, 1975.
- Курсанов А. Л., Вартопетян Б. Б. Физнол. раст. 3, 3, 214—224, 1956.
- 12 Моисеева Н. М. Докл. АН СССР. 49, 9, 706-708, 1949.
- 13. Соколов С. Я. Бот. жури., 38, 5, 661—668, 1953
- 14. Mackinney G. Journ. Hiol. Che, 140, 1, 1941.
 15. Nysterac F., et Berducou L. Bull. de la societe botanidae de France, 5-6, 1948.
 16. Santo C. Janch. of Wiss. Bot. Berlin, 2, 39-108, 1960.