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Abstract. We establish an exactly solvable Heisenberg-Ising modification of spin-1 Ni-containing 

polymer chain model, for [Ni(NN'-dmen)(μ-N3)2], with NN'-dmen being NN'-dimethlethyledediamine. 

The material has been partly studied in experiment but not for its behavior of magnetization plateaus 

and magnetic susceptibility at low temperatures. By exact solution, we show that the magnetization 

exhibits three plateaus at zero, mid, and 3/4 of the saturation value at low temperatures, when 

interaction parameters lie in the vicinity of the values recovered by fitting through fully Heisenberg 

model. The corresponding featuring peaks of magnetic susceptibility are clearly shown. We have also 

calculated the susceptibility in zero magnetic field versus the temperature which shows a peak 

around T = 12.6 K, which is compatible with the experimental results. The model also displays 

plateaus in thermal entanglement that capture the one-to-one correspondence between thermal 

entanglement and magnetization.  
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1. Introduction  

 The  -azido bridging ligand with divalent metal ions, mainly IICu , IINi , IICo , IICd , IIFe , and 

IIMn  [1, 2] is a very good candidate and one of the most adaptable and flexible ones for creating 

new materials with different magnetic properties. Besides, it is very functional in the studying of 

magnetization structure and magnetic correlations both in discrete and polymeric complexes. 

The nitrogen  -azido may give end-to-end (EE) or end-on (EO) coordination modes, where 

normally, the first ones cause antiferromagnetic couplings and the latter ones result in 

ferromagnetic couplings [3]. Much work has been devoted to the control and design of high spin 

metal-azide [4] systems by incorporating different organic ligands, transition metal coordination 

polymers with azide and flexible zwitterionic dicarboxylate ligands [5, 6] polynuclear Mn(II)-

azido bridging compounds have been experimentally measured and synthesized by [7]. 

Therefore, it would be potentially interesting to study the appearance of these coordination 

modes with relation to probable occurring magnetization plateaus in these systems, especially 

for long polymer chains. Magnetization plateau is observed in spin-half tetramer chain of copper 

compound 2 3 2(3 ) ( )Cu Clpy N−  (3 3Clpy− = − chloropyridine, 5 4 )C H NCl , with ferromagnetic-

ferromagnetic-antiferrmagnetic-antiferromagnetic bond alternating interactions [8-10].  
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Figure 1. The schematic representation of the chain with the underlying molecular structure of spin-1 Ni -containing 

polymer 
3 2[ ( )( ) ]Ni NN dmen N− − . The filled circles represent Ni  atoms, the smaller empty circles N  atoms; 

the bonds between the atoms are represented by light lines while the effective magnetic couplings by solid lines (the 

representation is purely schematic and the relative bond lengths and angles may deviate from true values. See [3] for 

more details on the molecular structure).  

 Ribas et. al. in their experimental work [3] reported that they synthesized and fully 

characterized a new IINi -compound, with chemical formula, 3 2[ ( )( ) ]Ni NN dmen N− − , where 

NN dmen −  is NN  −  dimethylethylenediamine that exhibits the two kinds of coordination 

mode at the same time (Figure 1). The molecular structure consists of IINi  ions centers 

alternatively linked by three double EO entities and one double EE entity. Each IINi  ion 

completes its distorted octahedral coordination by binding to one bidentate NN dmen −  ligand. 

Their theoretical results were obtained by considering a short Heisenberg quantum system with 

two blocks and periodic boundary conditions. Ribas et. al. in their calculations did not obtain the 

maximum magnetic susceptibility. We calculated the magnetic susceptibility at zero external 

magnetic field for the same two Heisenberg blocks of quantum system consisting of 8 nickel 

atoms with periodic boundary condition including the peak at low temperature ( 12T  ). The 

exact solution of the model was obtained by parallel computing (Wolfram Mathematica 

Language) in two pure Heisenberg blocks. The best fit to the experimental data presented by 

Ribas et. al. was obtained by introducing a anisotropy parameter   in the following way: 

( )x x y y z z

i j i j i j i jS S S S S S S S= + +  where i  and j  are adjacent spins corresponding to coupling 

constants 1J  or 2J . The susceptibility and susceptibility times temperature for 1.44 =  is 

shown in Figure 2. 

 

Figure 2. Magnetic susceptibility at zero external magnetic field for the two Heisenberg blocks quantum system 

with anisotropy parameter   consisting of 8 nickel atoms with periodic boundary condition. The blue graph is   and 

orange one.  



Entanglement of Nickel Containing Polimers || Armenian Journal of  Physics, 2019, vol. 12, issue 3 

263 
 

 Here we report on the magnetic properties of the same polymer through introducing an 

exactly solvable model that truly describes the interaction characteristics of the spin-1 Ni -

containing polymer [3] at low temperatures. There are some differences in the susceptibility for 

a long Ising-Heisenberg model and eight spin quantum Heisenberg model. Moreover the best fit 

to the short systems experimental data was obtained by introducing the anisotropy parameter. 

Nevertheless the magnetization curves for the same parameters of the long Ising-Heisenberg and 

short quantum Heisenberg models are very similar (see Figure 3). Thermal entanglement,  

quantum correlations and magnetization plateaus of Spin 1 and 1/ 2  Isning-Heisenberg models 

on diamond chains have been carefully studied [11-15]. We also look into negativity as a 

measure to observe quantum correlations and entanglement of the polymer. In section 2, we 

introduce the model Hamiltonian with a block composition and provide its exact solution. In 

section 3, we discuss the ground state and its phase diagram. 

 

Figure 3. Magnetization (m) of the quantum eight Heisenberg spins (orange) and Ising-Heisenberg (blue) models 

for the standard configuration depending on the external magnetic field (h). 

In section 4, we see the appearance of the magnetization plateaus and the susceptibility peaks 

and in section 5 we show the corresponding behavior of the quantum entanglement of the 

model. Finally, we give the conclusions.  

 

2. Solvable spin-1 model Hamiltonian  

The Ising-Heisenberg chain Hamiltonian has the form 
(1) (2)

1

( )
N

i i

i

H H H
=

= +  with 

 ( )(1)

,2 ,3 1 ,1 ,2 ,3 ,4 ,1 ,2 ,3 ,4

1 1
.

2 2

z z z z z z z z

i H i i i i i i B i i i iH J S S J S S S S g h S S S S
 

= − − + − + + + 
 

 

 
2 2 2 2

,1 ,2 ,3 ,4

1 1
( ) ( ) ( ) ( ) ,

2 2

z z z z

i i i iD S S S S
 

+ + + + 
 

                                        (1) 

 ( ) ( ) ( )( )( )2 2
(2)

2 ,4 ,5 ,4 ,5 ,4 ,5

1
,

2

z z z z z z

i i i B i i i iH J S S g h S S D S S= − − + + +  
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captures the interaction structure in the polymer 
3 2[ ( )( ) ]Ni NN dmen N− − , 

(Figure 1). In equation (1), ,i kS  is the vector operator of spin-1 at site k  of the i -th block 

and 
,

z

i kS  is its corresponding z -component. Cyclic boundary conditions are applied in the 

thermodynamic limit.  The parameters 
1J  and 

2J  are bilinear Ising ferromagnetic coupling 

constants, 
HJ  is Heisenberg antiferromagnetic exchange coupling, and D  is single-ion 

anisotropy, while the external magnetic field is given by h , whereas g  and 
B  are the 

Land\'{e} factor and the Bohr magneton respectively. 

After the exact solution of the model, when we construct magnetization and susceptibility, 

as long as it does not affect the qualitative nature of the results, we take the coupling constants 

and the anisotropy in the vicinity  of values obtained in  [1-3], namely 1

1 20J cm−= , 

1

2 37J cm−= , 1120HJ cm−= − , and 16D cm−= − , 2.39g = . 

Our exact calculations, based on the Hamiltonian H  with small bilinear Ising ferromagnetic 

and rather large Heisenberg antiferromagnetic couplings completely matches experimental  

results reported in the literature [3].  

 

 

2.1. The transfer-matrix approach 

 

 

We observe that the model of the polymer is actually composed of N  separable blocks each 

of which consists of 5 spins. Notice that the first and fifth spins of each block are shared by the 

neighboring blocks (Figure 1). The commutator of  [ , ]iH H  is equal to zero (1) (2)

i i iH H H= +  

and therefore the standard expression for the partition function ( )HZ tr e −=  may represented 

as 

 
1

,i

N
H

i

Z tr e
−

=

=   

where
1

Bk T
 = , with temperature T  temperature and Boltzmann constant 1 10.695Bk cm K− − .  

Furthermore, utilizing the Ising (diagonal) nature of interaction between neighboring blocks, 

under the trace operation we assume that operators ,1

z

iS  and ,5

z

iS  are replaced with mere 

numbers ,1is  and ,5is  which independently take values 1,0,1−  (because they are classical Ising 

spins).   

In this notation the partition function transforms into 
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 ( ),1 ,5

,1 ,5

( , )

{ , 1,0,1| 1 } 1

( ).i i i

i i

N
H s s N

s s i N i

Z tr e tr W
−

=− =  =

= =                                        (2) 

 

Here, the transfer matrix is ( )1 5

1 5

( , )

,|| || iH s s

s sW W tr e
−

= = .  

Instead of considering a single transfer-matrix we could consider a double-block 

computation approach with generating sub-Hamiltonians (1)

iH  and (2)

iH  in which we have a 

block of four spins followed by a block of two spins, where the first and last spins of each 

block are always shared with the neighboring blocks (see Figure 1.) and (1) (2)W W W= . The 

two approaches would obviously give the same results. In our calculations, on the basis of 

transfer matrix for the blocks, we would face a not very common case in which the transfer 

matrices of the two sub-blocks are symmetric while the product of them which gives the 

transfer matrix of the whole block of 5 particles is non-symmetric positive (see [16], for 

example.). As it is well known, W  would be similar to a matrix in Jordan canonical form. 

Hence trW trJ= , where J  is the Jordan form of W . Given that the transfer matrix is a matrix 

of positive elements, according to Perron-Frobenius theorem, we know that the eigenvalue 

with the largest absolute value would be real (An alternative approach would be a 

representation of the partition function as ( )NZ tr W= , where (1) (2) (1)W W W W=  is a 

symmetric (hence diagonalizable) real matrix.). 

Now, the free energy and magnetization per site (in units of saturation value) in 

thermodynamic limit are respectively given as 
1 1

ln ln
4 4

Maxf Z
N


 

= − = − and 

1

B

F
m

g h


= −


. 

 

 

2.2. Diagonalizing the block Hamiltonian 

 

In order to obtain the explicit form of the partition function one needs the exact form of the 

transfer matrix and hence the diagonal form of the block Hamiltonian. To diagonalize the 

Hamiltonian iH  we remember that
4

,

,1

[ , ] [ , ] [ , ] 0z z z

i i i i i j

j

H S H S H S= = = , which implies the 

existence of a common eigenbasis for iH  and z

iS . By performing a unitary transformation to a 

representation where the eigenvectors of z

iS  are sorted by decreasing order of corresponding 

eigenvalues we bring the 243 243  Hamiltonian iH  to a block diagonal form. Further the 

commutation relations ,[ , ] 0z

i i jH S =  ( 1,4,5j = ) help us to make ordering inside the blocks by 

the same rule bringing iH  to the maximally arranged block diagonal form H  
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1 4 5

1 4 5 1 4 5 1 4 5 1 4 5 1 4 5
, , 1,0,1

( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ,( )
s s s

H s s s s s s s s s s s s s s s+ − + −

=−

=     A A B B C  

 

 243 243 1 4 5 1 1 1 4 5 1 1 1 4 5 2 2, , )] , ( , , )] , ( , , )] ,[ ] [{[ ( [ [iH diagonal s s s s s s s s s+ − +

   = A A B  

 1 4 5 2 2 1 4 5 3 3 1 4 5( , , )] , ( , , ) , , 1,0,1 ,[ [ ] }| ]s s s s s s s s s−

  == −B C  

 

 
1 4 5

1 4 ,5

1 4 5

( , 1,0, , )
( , 1, 1, , ), ,

( ,0, 1, , )

H

i

H

d s s s J
d s s s

J d s s s

 
 − 

=   =  
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A B             (3) 

 

( )

( )

( )

1 4 5

1 4 5

1 4 5

,1, 1, , 0

,0,0, , ,

0 , 1,1, ,

H

H H

H

d s s s J

J d s s s J

J d s s s

 − −
 

= − − 
 − − 

C                       (4) 

 

and 

 

 ( )( ) ( )( )2 2 2 2 2

1 2 3 4 5 1 5 2 3 4 1 2 3 4 5

1
( , , , , ) 2 2

2
( Bd s s s s s D s s s s s gh s s s s s= + + + + − + + + +  

 ( )( )3 2 1 1 2 3 4 2 4 52 .)Hs s J J s s s s J s s− + + +                                               (5) 

 

Is the fully Ising analogue of the block Hamiltonian. Thus, it is clear 

that
1 2 3 4 5( , , , , )s s s s sA 's are themselves eigenvalues of iH . All left to do is to diagonalize B  

and C  to arrive to the following final expressions for the eigenvalues of iH . 

 

 1 4 5 1 4 5( , , ) ( , , ),E s s s s s s
 =A A  

 ( ) ( ) ( ) ( )( )
2 2

1,2 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5

1
( , , ) , 1,0, , ,0, 1, , , 1,0, , ,0, 1, , 4 ,

2
( )HE s s s d s s s d s s s d s s s d s s s J



=  +    −  +B  (6) 

 1 1 4 5 2 2,3 1 4 5 2

1 1 1 1
( , , ) ( ), ( , , ) ( ) 3( )

3 3 2 2
E s s s c C T E s s s c C T i C T= − + + = − − +  −C C

 

 

with the following notations  

 
3 3, ,C R F T R F= + = −  

2
3 2 1 23

, ,
9

c c
F Q R Q

−
= + =  

 ( )
3

32 1 0 2
0 1 2 1 3

9 27 2 1
, 3 2 ,

54 6

c c c c
R c t t t t

− −
= = − − +                                       (7) 
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 ( )2

1 1 2 2 1

1
, , ( ).

2

k

kc t t c t t Tr= − = − = C  

Now, the transfer matrix is representable as 

 1 4 5

4

( , , )

1 5

, , ,

( , )
E s s s

s

W s s e


  

−

=

= 
A B C

                                             (8) 

 

3. Ground state of the polymer  

 Let us now briefly describe the ground state phases of the spin-1 
3 2[ ( )( ) ]Ni NN dmen N− −  

in the vicinity of the values of parameters described in [3]. Figure (4) shows the phase diagram 

for different values of the antiferromagnetic Heisenberg coupling constant 
HJ  and magnetic 

field h .  There are four distinguished phases in the phase diagram, one Saturated Paramagnetic 

Phase (SPA) and three Quantum Antiferromagnetic Phases (QAF). 

 1 1

1 3
| |1,1,1,1 1, | 1 (|1,0,1,1 |1,1,0,1 ) ,

42

N N

i i i iSPA m QAF m= = =  =  = −  =   

 
2 21

22| |
| 2 |1 |1, 1 | 0,0 | 1,1 |1

28 2

( )
[ ( )]

( )

N
HH

i i i
i H

H H

D JJ
QAF

JJ D J



=

+ +
 =   −  + + −   

+ + +
  

where 
1

,
2

m =                                                                                                                       (9) 

 

 1

2 21

1
| 3 | ( 1) | 1,1 1 | 0,0 |1, 1 | ( 1) ,

1 1

[ ( ( ) )]
( )

N
i i

i i i
i

QAF ab a

a ab

+

=

 =  −   −  − −   + −    − 

+ + −


where 0,m =  

 
2 2(2 ) 8 ,H HD J J = + +  

 1 1( ( 1) ,0,0, ( 1) , ( 1) )i i i

ia  + +=  −  −  −                                          (10) 

 1 1( ( 1) , 1,1, ( 1) , ( 1) ),i i i

ib  + +=  − −  −  −  

and 

 ,1 ,2 ,3 ,4 ,5 ,1 ,2 ,3 ,4 ,5 ,1 ,4 ,5

1
( , , , , ) ( , , , , ) ( , , ) ,( )i i i i i i i i i i i i i i

H

s s s s s d s s s s s E s s s
J

 = −  

1 4 5( , , )iE s s s  is the eigenvalue of iH  corresponding to the i -th block of | 3QAF  , such that 

1 1

2 ( ( 1) , ( 1) , ( 1) )i i i

iE E + +=  −  −  −C (see eq. (4) and eq. (6).  



Abgaryan et al. || Armenian Journal of Physics, 2019, vol. 12, issue 3 

268 
 

 

 
 

Figure 4. Ground State Phase Diagram of the spin-1 
3 2[ ( )( ) ]Ni NN dmen N− −  polymer for different values of 

HJ  and magnetic field h  and for 1

1 20J cm−= , 1

2 37J cm−= , and 16D cm−= −   

4. Magnetic properties of the polymer  

 

Our calculations show that at low temperatures, with magnetic field, three magnetization 

plateaus at 0 , 
1

2
, and 

3

4
 of the saturation value are observable, which are clearly shown in Fig 

(5) versus the applied magnetic field h  and the temperature T . Fig (5) also shows the first 

plateau along with part of the second one for values of 0  to 6  Tesla  of the applied magnetic 

field and in temperatures below 2K .  

 

 
(a)                                                                              (b) 

 

 

 

Figure 5. (a) magnetization behavior of the spin-1 
3 2[ ( )( ) ]Ni NN dmen N− −  polymer as a function of the 

absolute temperature T  in Kelvin  and the magnetic field h  in Tesla . (b): the zero- and 1/2-plateau of the 

magnetization is showing. Magnetization has no units. 
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Magnetization plateaus occur both in antiferromagnetic and ferromagnetic materials and 

they play an essential role in understanding a large family of nontrivial quantum phenomena. 

The phenomenon of magnetization plateau is considered as a macroscopic manifestation of the 

essentially quantum effect in which the magnetization m  is quantized at fractional values of 

the saturation magnetization 
sm . The quantum plateau state was actually first discovered over 

two decades ago [17]. One of the first experimental observations was reported in a diamond 

chain [18]. Magnetization plateau has been studied during the past decade both experimentally 

and theoretically in spin-1 models [19-23]. 

We have considered an infinite chain and exactly calculated its magnetization plateaus as in 

ref. [15]. But we also regarded finite chains with all Heisenberg interactions versus 

Heisenberg-Ising interactions as in the Hamiltonian (1). We considered chains of one block 

( 1N = ) with four spins and two blocks ( 2N = ) with eight spins with cyclic boundary 

conditions. The results for magnetization plateaus are almost the same for the mid-plateau and 

3/4-plateau except that their horizontal positions on magnetic field h  axis are slightly shifted 

with respect to each other, while zero-plateau would disappear. 

In accordance with the appearance of three plateaus in the magnetization graph, we observe 

three corresponding peaks in the magnetic susceptibility as a function of the applied magnetic 

field h  and the temperatureT . 

 

 
 

 

Figure 6. The three peaks of the magnetic susceptibility of the spin-1 
3 2[ ( )( ) ]Ni NN dmen N− −  polymer as a 

function of the absolute temperature ( )T K  and the magnetic field ( )h T  at low temperatures. Magnetic susceptibility 

  is measured in 3 1cm mol− . 
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Figure 7. Plot of magnetic susceptibility   versus the temperature in zero magnetic field for 

3 2[ ( )( ) ]Ni NN dmen N− −  polymer  

 

The magnetic susceptibility of a material is equal to the ratio of the magnetization m  within 

the material to the applied magnetic field strength h . This ratio, strictly speaking, is the volume 

susceptibility, because magnetization essentially involves a certain measure of magnetism 

(dipole moment) per unit volume. For single Ni  - containing polymer with cyclic boundary 

condition in the thermodynamic limit, the molar magnetization m  is has the dimensions of 
3 1cm Tmol−  and the molar magnetic susceptibility   has the dimension of 3 1cm mol− . The 

characteristic peaks of the magnetic susceptibility can be seen in the low temperatures see 

Figure 6. 

We have also calculated the susceptibility in zero magnetic field versus the temperature 

which is shown in Figure 7 and has a peak around 12.6T K= , which is compatible with the 

result from [3].  

 

5. Thermal negativity of Ni -containing polymer 

 Entanglement is a type of correlation that is quantum mechanical in nature. Studying 

entanglement in condensed matter systems is of great interest due to the fact that some 

behaviors of such systems can most probably only be explained with the aid of entanglement. 

The magnetic susceptibility at low temperatures, quantum phase transitions, chemical reactions 

are examples where the entanglement and correlation functions are the key ingredients for a 

complete understanding of the system [24-28]. Furthermore, in order to produce a quantum 

processor, the entanglement in condensed matter systems becomes an essential concept. On the 

other hand, in systems like some molecular magnetic materials, the magnetic susceptibility can 

be directly related to an entanglement witness (EW) [29]. Thermal negativity and 

magnetization plateaus of spin-1 particles in a diamond chain Ising - Heisenberg model has 

been recently studied in [12, 20].  
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Figure 8. The plateaus of the negativity in correspondence with the magnetization plateaus  

 

 

We calculated negativity as a calculable measure of thermal entanglement [30] in Ni-

containing 
3 2[ ( )( ) ]Ni NN dmen N− −  polymer of spin-1 particles with Heisenberg-Ising 

interactions. For that purpose, we used the reduced density matrix   of the pair of particles 

with Heisenberg interaction between them in the block. To find out the reduced density matrix 

  in the r the block, we need to trace out all the degrees of freedom except for the 2nd and 

3rd spin in block r . To accomplish such a calculation, we followed a method similar to the one 

that is described in [20] through which, the reduced density matrix   is derived in terms of the 

transfer matrix. Then the amount of entanglement between the two particles would be given by 

1|| || 1

2

AT

Ne
 −

= , where AT  is the partial transpose of   with respect to any one of its 

subsystems meaning any one of the spins coupled with antiferroagnetic Heisenberg exchange, 

whose elements are | | | |AT       =    and 1|| ||X  is the trace norm of X , which is 

†Tr X X  by definition. The result is showing in Figure 8. We can see the one to one 

correspondence between the negativity plateaus and those of the magnetization in Figure 5. 

 

6. Conclusion   

 We introduced and explored a compatible theory model of a Ni -containing polymer for a 

long chain that can fully cover and explain the experimental data which was gained and 

reported in [3] we also obtained the peak of magnetic susceptibility for the model described by 

Ribas. Along with studying magnetic properties of the model, we investigated quantum 

entanglement by calculating the negativity for the Heisenberg-interacting pair in the model and 

noticed a very good agreement with the magnetization at low temperatures. We conducted our 

calculations on the basis of the transfer matrix method for separable blocks, where each two 

consecutive blocks would have their first and last spins in common. This study would enhance 

our understanding of nitrogen  -azido ligand as one of the most adaptable entities to be 

exploited to create new materials both discrete and polymeric while playing a key role in 

determining the relative magnetic properties of the materials. This is especially true for the 

low-temperature behavior of this ingredient since there is no experimental result for magnetic 
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plateaus and other magnetic properties of Ni-containing polymer, 
3 2[ ( )( ) ]Ni NN dmen N− −  at 

low temperatures.  
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