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Abstract. We develop a variational approach in momentum space for an impurity electron in 

bilayer graphene with an energy gap opened by perpendicular electric field. The binding 

energy of an impurity electron in gapped bilayer graphene is studied by this method and it is 

shown that the energy is monotonically increasing with the increase of the gap value. The 

dependence of the binding energy on the interlayer hopping parameter is also investigated. The 

method is extended for the investigation of impurity ground state energy in an external 

magnetic field. 
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1. Introduction  

Graphene monolayer is a gapless semimetal where the electrons are massless Dirac fermions 

and exbibits a linear dispersion near the Dirac point [1]. The graphene bilayer, which is 

constructed of two stacked graphene planes, demonstrates more intriguing properties: the charge 

carriers here are chiral quasiparticles with nonzero effective mass and dominantly parabolic 

dispersion [2]. Theoretical and experimental investigations have shown that the electric field 

modifies band structure of the system near the K point, and may open an energy gap in the 

electronic spectrum from zero to midinfrared energies [3]. So, differently from monolayer and 

unbiased bilayer graphene, which are zero-gap semiconductors, a biased graphene bilayer is a 

semiconductor with energy gap between valence and conduction bands tunable by a 

perpendicular electric field. The gap may be opened also by chemical doping, that creates a 

potential difference between layers.  

More reach physics is expected for graphene multilayers [4], where the magnitude of gap 

strongly depends on the number of graphene layers and its stacking order [5].  In [5, 6] we 

studied theoretically electric field induced band gap dependence in graphene multilayers on 

different ways of stacking between consecutive graphene planes. Coulomb problem in gapped 

graphene systems was considered in [7, 8]. In [9], using tight-binding approach with second 

quantized Hamiltonian, we investigated the binding energy of excitons created by an 

electromagnetic field in bilayer graphene with opened energy gap. 

 It is interesting to investigate the impurity states in bilayer graphene, where the binding 

energy of impurity and its localization lengths can be controlled by external electric and 

magnetic fields.  
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For fundamental physics as well as for different applications it is interesting to develop 

transparent analytical methods for a better understanding the physics of a single impurity in 

graphene systems and the influence of band structure parameters on the impurity electron 

binding energy, oscillator strengths etc. 

In this paper we develop a clear variational approach in momentum space for calculation of 

the ground state energy of an impurity electron in bilayer graphene with opened energy gap. 

    The plan of the paper is as follow. Section 2 presents our variational method for an impurity 

electron in gapped graphene bilayer. In Section 3 we obtain the form of Hamiltonian in external 

magnetic field in coordinate as well as in momentum space. Section 4 presents main results and 

discussions. Our conclusions are presented in Section 5. 

 

2. Variational approach in momentum space 

    

 The Hamiltonian for bilayer graphene in the vicinity of K point in the case of two band model 

has the following form:  
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where U  is the gap induced by a static perpendicular electrical field, 3 3 F3 / 2 0.1vv a=   is the 

effective velocity, and Fv  is the Fermi velocity in monolayer graphene (here we omit the real 

spin and valley quantum numbers), and a  is the lattice constant. Tight-binding parameter 3  

describes the interaction between different B atoms in neighboring layers ( 3 0.31eV  ). 

The equation for determination of hydrogen-like impurity energy spectrum in gapped 

graphene bilayer can be presented in the form  
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with 0H given by Eq. (1). From the system of two equations (Eq. (2)) we obtain one equation for 

the spinor component  : 
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where ( ) arctan( / )y xp p p = . In this work we do not take into account the azimuthal asymmetry 

of the bands, so, in Eq. (3) we ignore the term ( 3
3 ˆ cos3 /v p m− ) that is responsible for the 

trigonal warping of the bands [5, 6]. We omit also the term 2 4 2/Z e r  in Eq. (3), which becomes 

crucial for small values of the energy gap, when impurity level is not shallow.  
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In momentum representation, the operators 2
p̂  and 4

p̂  have the form 2p  

and 4p correspondingly.  The potential energy 2( )V r Ze r= −  (   is the dielectric constant) that 

is the operator of multiplication in the coordinate space, becomes in the momentum space the 

integral operator with the kernel  ( , ) ( ) ( )V V V = − =p p p p q  defined as [10]: 

                                              
( )

2

1
( ) ( ) exp( / )

2
V V i dV


= −q r qr . 

In the momentum space, taking into account the above-mentioned approximations, the equation 

(3) for determination of impurity electron energy in bilayer graphene become  
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where ( ) * 2 24 / 2 cosBV a R p p pp   − = − + −p p   is Fourier transform of two-dimensional 

Coulomb interaction with 
2* 4 22R e =  being effective Rydberg energy, and 2 2/Ba e = is 

effective Bohr radius, 

    Using dimensionless units of */E E R= , */U U R=  the equation for energy of an impurity 

electron can be presented in the form 
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2 2 2 2
3/e v =  is effective fine structure constant that corresponds to the velocity 3v ; the mass 

m is defined by the expression 2
1 2 Fm v= [2, 3] and in the expression for effective Rydberg we 

use 00.02m =  with 0m  is free electron mass.  

     Since there is no analytical solution for Coulomb problem in bilayer graphene with 

opened energy gap (Eq.3), here we develop a variational approach in momentum space. For 

ground state energy of an impurity electron we choose variational function in the form 

22 2( ) ( )k N k = + ,                                                     (7) 

where   is variational parameter and N is the normalization constant. Using this trial function, 

the energy of an impurity electron can be obtained from the equation: 
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3. Impurity states in a magnetic field 

 

In external magnetic field the energy states can be obtained from Eq. (3) where instead of 2
p̂  

and 4
p̂  one should take 2ˆ( )

e

c
−p A  and 2 2ˆ ˆ( ) ( )

e e

c c
− −p A p A  correspondingly. In cylindrical 

coordinates we choose vector-potential A  in the form / 2, 0zA B A A = = = . In the case, 

when we are interested to calculate the ground state energy of an impurity electron we find 
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where 2 2 / 4,m eB mc  = = . Taking into account expression (9), the equation for impurity 

states in a magnetic field in bilayer graphene (in the absence of the trigonal warping effect) in 

coordinate space becomes  
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In momentum space 2ˆ( )p and ( )
4

p̂  have the form 2p  and 4p  while 2 , 4 and 
2Ze

r
 one should 

change to integral operators [10]. The variational function can be chosen here in the form 
2exp( )N p = − .  

 

4. Results and Discussions 

 

      

 In our previous work [11] we investigated the binding energy of an impurity electron in 

gapped bilayer graphene using variational approach in coordinate space.  The difficulty of such 

method is connected with the presence of the term, proportional to 4
p̂  (see Eq.(3)) that  was 

considered in [11]  as a double action of the operator 2
p̂ in the consecutive order. Note that this 

approach leads to enough complicated calculations.  

The variational method developed in p-space gives better results than [11] and is more 

convenient for systems with complicated dispersion of charge carriers law, e.g. for graphene 

systems. After minimization of the energy, obtained as the solution of Eq (8) on the parameter 

 , we obtain the dependence of total energy (counted out from the middle of the gap in effective 

Rydberg *R )  on the gap value and for different values of  tight-binding parameter 1 .  
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The binding energy is defined as / 2BE U E= − . As is shown in Fig.1, the binding energy 

monotonically increases with the increase of the gap value, and in the case of fixed gap, to larger 

values of the interlayer hopping parameter 1  correspond larger values of BE . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The variational method in momentum space gives better results for an impurity electron 

binding energy in comparison with results obtained in coordinate space: for the gap value 

150U mev=  and   1 380mev =   the binding energy obtained by the first method is larger by 3%.  

 

 

5. Conclusion  

 

In this paper we develop a variational method for calculation of an impurity electron binding 

energy in momentum space in bilayer graphene. This approach is generalized for the 

investigation of binding energy of an impurity in a magnetic field. The suggested method is more 

appropriate for systems with complicated dispersion law of charge carriers, e.g. for a graphene 

bilayer. The possibility of impurity energy tuning by external fields and by changing band 

structure parameters can be promising for applications in nano- and optoelectronics for 

construction of new devices. 

 

 

Figure 1.  Dependence of the binding energy of an impurity electron in effective Rydberg 

(
* 2R meV= ) on the gap value U for different values of the parameter 1 : solid line corresponds to 

the value of 1 380mev = ,  dot-dashed line is for 1 400mev = , and dotted line is for 1 420mev =  
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