определением среднего эффективного времени [1]. В качестве пример в габлице приведены данные о продолжительности местиоанестезирующего действия новоканна, лидоканна и тримеканна, соответствующи результатам их клинической апробации.

Таким образом, предлагаемая нами модификация для определений продолжительности местноанестезирующего действия при проводнико пой анестезии имеет препмущества в отношении способа введения и регистрации, обеспечивает инфокую наглядность при работе с большогрупной животных, приводит к экономии животных и времени проведения эксперимента. Метод прост и доступен для применения в фармакологических лабораториях и в демонстрационных целях.

JHITEPATYPA

- Беленький М. В им.: Элементы количественний писыти Бармаколога еского эффекта. 148. Л., 1903.
- 2. Розин М. А. В ки: Фармакология нагологических процессов. 269, 1951.
- 3 Adams H. I. et all. Arch. iii) Pharmacolyn., 224, 2, 277-282, 1976.

Поступнае 15 VI 1997 в.

Биолог, ж. Армении, т. 41 № 1, 64--67, 1988

3.18 57717 + 7773 + 591.39

АКТИВНОСТЬ ДЕГИДРОГЕНАЗ МОЗГА ЭМБРНОНА КУР ПРИ ИНКУБИРОВАНИИ ЯНЦ В УСЛОВИЯХ ПЕРЕМЕННЫХ ТЕМПЕРАТУР

А. А. СИМОНЯН, Р. А. СТЕПАНЯН, Р. А. СИМОПЯП, Г. Г. БАТИКЯН Институт биомичии АН АрмССР, Ереван

Ключевые слова: яйца кир, сипотермия, изоцитратдегидро-мана, ликтатдегидросенази.

На необходимость создания условий для теплоотлачи инкубируемыми яйцами обращали винмание многие исследователя. В этих ислях рекомендоналось общее синжение температуры во втору с половину инкубаиконного периода. На наш взгляд, пелесообразнее поддерживать стабильную температуру с ежедневным перподпческим охлаждением в определенные часы суток, способствующим лучшей тенлоотдаче и более интенсивному сазообмену в связи с изменением инутринйневого давлевия, что в свою очерель обусловливает высокую осуранность молодияка. Однако, если практический аспект влияния периодического умеренпого охлаждения на организм развивающегося птецеца в какой то степени отработан, то биохимическая сторона вопроса 🐭 затронута вовсе. Можно предположить, что периодическое искусственное оклаждение эмбриона в первую очередь затрагивает процессы внергообмена, активирует реакции образования эперени из новых дополнительных источников в клетке. Ранее нами было показано, что в условиях колебательной темнературы в яйцах происходит разобщение окислительного фосфорилирования с преобладанием свободного окисления и значительпо повышается активность АТФазы [4].

В настоящем сообщении приводятся результаты изучения влияния кратковременного охлаждения яни в период инкубации на активность

зактагдегидрогеназы (ЛДГ) и изоцитратлегидрогеназы (ПЦДГ) мозга в разные периоды эмбрионального и раннего постэмбрионального развития кур.

Антернах и метопики. Работа проведена в лаборатории эмбрнохимии Института баннии АН АрмССР в 1985 г. Опыты проводили на 15-, 20 лиснику эмбрнонах и такевных цыплятах. Ябиа охлаждали с 10 го лня инкубации при 20° в течение 16 ини путем отключения системы оботрена и увлажаечия инкубатора. Охлаждение тогоряли трех-, четырех- и интикрат в чение суток. Япия контрольной группы при стабильной температуре. Зак это предусмотрено в правилах по инкубации (температура 37.5°, относительной влажность 50—60%).

Методы выделения ферментного предарата и общей активности ЛДГ подробно тупен работе [2] Активность ИНДГ определяли по метолу боботь и согр. [3], комичество митоход приздыного и питопламитического болка—

по Лоури и согр. [7].

Результаты и обсуждение. Ткань мозга, как и большинство тканей животных, содержит не изопатратлег протеназы, отличающиеся кофервитной специфичностью, конформационными и кипетическими характеристиками, особенностими локализации и функционирования в клет-№ НАД-ИЦДГ рассматривается как «истипция компонент» цикла. стебся и локализуется посключительно в митохопдональной фракции. НАДФ-ИЦДГ обнаружена как в митохопдриальной, так и цитоплазватической фракциях клеток [4, 6]. Основная функция витоплазматипень. ::АДФ-ПЦДГ состои и генер по виш НАДФП, необходимого ия различных биоспитетических прочести. Участие митохопдриальрав НАДФ-ИЦДГ в энергетическом метаболизме, как полагают, опоредовано через НАДФ:НАД-трансдегидрогенизную реакцию «НАДФ: ВАД-оксидоредуктаза) [8]. В нашен лаборатории ранее изучался хаиктер течения этих реакций в ходе эмбрионального развития сельскоозяйственных итна [1]. Выявлено превилирование активности НАДФидг над НАД-зависимым ферментом в период эмбрионального разшиня кур.

Результаты настоящих нес. слований показали, что в норме активсеть НАДФ-ИЦДГ в мигохондриальной фракции мозга в процессе эмрионального развития заметных изменений не претериевает (табл. 1)

аблица 1. Вличине переменцых темперттур на активность НАДФ-ИЦЛГ в сублеточных образованиях мозга курпных эморновии и цыплят, мемоль НАДФН/мг кака/30 мнн.

liii pasoii-	Источник фермента	Kompan	Tpenkpar- noc ox.tim	Hpupact akturnuc- an, %	leriapex- kpathoe ox- zawzeine Ilpupoci akthung- cth, %	Питикрат- ное охлаж дение Прирост активно- сти, %
•дневные Юрионы	митоходд- рви	0.051*	0.058	13.7	0.062** 21.5	0.066** 17 6
-диевитае	питоп, азма митохонд-	0.037	0.038	12,3	0,038 0.075** 36.S	0.043** 16.2 0.069** 21.0
бр поны	риц цигопладма	0,0.15	0.034		0.036	0.037
шлята (пеппые	митохонд-	0.019	0.026**	36.8	0.026** 38.8 0.025	0.027** 42.1
	REFERENCE	V.924	V.023		V.V2J	0.025

^{**} Статистически достоверные давные.

[•] Средние данные из ляти опытов.

Значительное антивирование НАДФ-ИПДГ при охлаждении явы отмечается в митохопирамх 3 лисвиых пыплят (от 36,8 до 42,1% в зависимости от режима охлаждения янц).

На основальной персиенной то ператеры окисление изолимонной кислопод вланинем персиенной то ператеры окисление изолимонной кислото в матохот кризу — выта прустся, причем прирост с-кетоглутаровов коследи — при то твисимости от частоты охлаждения яни. Этот происсе особенно усиливаттся и пераод интененного линогенеза, сязлащито с мислипиланией монга. Образующийся при этом НАДФН может пыть всясльовали и запанобра ных реакциях восстановительных биосинте ов. По-паламиму, наблюдаемое повышение жизнеснособности цыпля, при умеренном охлаждении яни связано и со стимулированием этой реакции,

Таблица 2.. Влияние пременных температур на активность ЛДГ а субълеточных образованиях могот куриных эмбрионов и цыплят, мемоль пиридиннуюлеотида/мт белка мин

Дин- разинтия	Петочник фермента	Kod epaen-	Kemino.m	Трехират- пое охлаж- вение	Hon oct aktubno- ctu, %	leriopea- kpartose oxdamare-	Прираст актыпности. %
15-даепчые В полудив	Aratiawa	ТАД НАДЫ	0,26 0,69	0.81*	44.6 27.5	0.71*	26.8 10.1
	patt	над Пады	0.41 0.48	0.54° 0.68°	31.7 41.6	0.51*	24.4 27.0
20-лисаные	Интон. Бэма	нал Падп	0.a9 1.18	1.15⁴ 1.30	19.2 10.2	1.17*	31.4 16.9
	sonovana- pun	НАЛ НАДИ	0.70	0.751	23.0 27.1	0.68 0.85°	11.5 21.4
5 мемиле пыплять	DIFOGEALISTA	HA.L HA.LiT	0.67 1.00	0 874	$\frac{30.0}{27.0}$	D.80 1.05	14.3 6.0
	hild mittazolia-	над надн	u.54	9.63 0 (15*	18.8 26.0	0.60 0.681	13.2 26.0

⁴ Статистические достоворные данные,

В табл. 2 принечены репультаты изучения активности ЛДГ под влиянием переменной температуры викубирования янц в разные неряоды развитит изилленья. В контрольных опытах и интоилазме и ми-тоховираях активность ПАД- и ПАДИ-ЛДГ в ходе эмбрионального развития итенца зауство увеличивается. У 5-дневных пыплят образование лактата и пирувата несколько подавляется по сравнению с периодом выклева.

Под влиянием трехкратного охлаждения яни в разные периоды индивидуального развития кур прирост активности НАД-ЛДГ в цито плазме достигает от 29,2 до 44,6% по сравнению с контролем. В меньшей степени, по также повышается активность НАДИ-ЛДГ. Аналогичная картина активнрования двух форм ЛДГ отмечается и при четырехкратном охлаждении яни. Однако в условиях нашего опыта и митохондриальной фракции наблюдается обратная картина активнрования фермента: прирост активности НАДИ-ЛДГ намного превалирует над НАД ЛДГ.

Таким образом, под влиянием низких температур инкубпрования яни происходит заметное активирование двух форм ЛДГ. Однако этот процесс не равкозначен для митохондриального и витоплазматического фермента. Холодовой фактор в цитоплазме больше ускоряет реакции образования пируната, чем лактата, стимулируя этим путем процессы аэробного окисления и компенсируя недостаток теплоотдачи. Имеются данные о том, что при адаптации теплокровных животных к многократным персохлаждениям обмен углеводов в ткани головного мозга направлен на образование фосфорилированных форм глюкозы, которые вовлекаются в метаболизм по основным в шунтовым нутям. Происходит качественная и количественная перестройка во изанмоотношениях этих метаболических путей. При этом интенсивность протекания окислительных процессов в клетке во многом зависит от состояния фермецтов инкла трикарбоновых кислот. В окислительных пронессах ткани мозга при адаптации теплокровных животных к холоду отводится надлежаниее место сукцинат- и изоцитратдегидрогенизам. В наших экспериментах активирование митохондриального НАДФ ИПСТ головного мозга свидетельствует о стимулировании реакций инкла трикарбоновых кислот в мозге итенца при кратковременном охлаждении викубируемых япи. Одновременно в митохондриях заметно увеличивастея количество поглощенного кислорода [4]. В условиях пониженных земнератур в мозге может происходить также интенсивное окисление не эстерифицированных жирных кислот, являющихся источником экергин. С другой стороны, увеличение дыхания мозга охлаж тенных птенцов может быть связано с усилением окисления дакарбоновых кислот. Отмеченные едвиги являются важными компенсаторными процессами, обеспечивающими последующий выход цынденка из состояния термии.

JHITEPATSPA

- Арутюнян Л. Симонян А. Л. Симонян Р. Л. Пейрохимин, 2, 4, 417, 1983.
- Базикян Г. Г. Симовян А. А. Биолог. ж. Армении, Зг. 8, 807, 1981
- Еприко II Вольский Г. Г. В кил Методы биохимических исследований 212, Л., 1982
- 4. Симонян А. А., Ст напам Р. А., Месропян Е. Б. Биолог, ж. Армении, 40, 5, 387, 1987.
- 5. Carlier M. Pantaloni D. Eur. J. Biochem., 37, 2, 311, 1973.
- 6. Fatania H. R., Dalziel K. Biochim, Biophys. Acta. 631, 1, 11, 1980.
- Lowry O. H., Rosenbrough N. J., Farr A. L., Rundalt R. J. Biol. Chem. 194, 265, 1951.
- 8 Stein A. M., Stein J. H., Rickman S. K. Brochemistry 6, v. 1970 1967.