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Abstract. We suggest and study a model of interacting fermions demonstrating existence of a 

thermodynamically stable quantum time-space crystal. An order parameter characterizing this state is 

periodic in both real and imaginary times. The imaginary-time dependence is used for calculation of 

the free energy of the system, while the real-time dependence leads to non-decaying oscillation of 
correlation functions of two- and more times. Single-time physical quantities do not depend on time. 

The oscillation of correlation functions at different time scan in principle be observed in scattering 

experiments.  

Keywords: thermodynamic quantum time crystal, time-dependent order parameter, instanton-anti-instanton 

lattice. 

 

1. Introduction  

Many materials have stable crystalline structures that are periodic in space but not in time. 

Are thermodynamic states with a periodic time dependence of physical quantities forbidden by 

fundamental laws of nature? This question was raised by Wilczek [1] who proposed a concept 

of quantum time crystals using a model that possessed a state with a current oscillating in time. 

The publication has attracted a great attention but a more careful consideration of the model [2] 

has led to the conclusion that this was not an equilibrium state. More general arguments against 

thermodynamically stable macroscopic quantum time crystals have been proposed later [3]. As 

a result, a consensus has been achieved that thermodynamically macroscopic quantum time 

crystals could not exist although slowly decaying oscillations in systems out of equilibrium 

were not forbidden. At present, the term ‘Quantum Time Crystal’ is used for non-equilibrium 

systems. 

Here, considering a model of interacting fermions it is demonstrated, that the system can 

undergo a phase transition into a state with an order parameter oscillating in both imaginary  

and real t  time. The period of the oscillations in the imaginary time  equals ( )
1

mT
−

, where T is 

temperature and m  is an integer, as required by boundary conditions for bosonic fields. The 

periodic real time oscillations can be observed in scattering cross sections or other quantities 

containing correlation functions of two or more order parameters but there are no oscillations in 

single time quantities. Thermodynamic quantum time crystal (TQTC) proposed here can exist in 

an arbitrarily large volume and is a novel type of ordered states of matter. A more detailed 

discussion can be found in Refs. [4,5]. 



Thermodynamic Quantum Time-Space Crystal || Armenian Journal of Physics, 2019, vol. 12, issue 3 

241 

 

2. Model and calculation of the free energy  

Although being rather general, the model considered here has been originally introduced in a form 

of a spin-fermion model with overlapping hot spots (SFMOHS) for description of under doped 

superconducting cup rates [6,7,8]. In the language of SFMOHS, the new TQTC state is 

characterized by a loop currents order parameter oscillating both in space and time. The phase of 

the oscillations in time is arbitrary, and one should integrate over the phase at the end of 

calculations. It is very important that the average of the order parameter equals zero. As a result, 

the time reversal symmetry is broken but nomagnetic moments appear. These features may 

correspond to the still mysterious pseudogap state in superconducting cup rates [9,10,11]. 

Hamiltonian of a simplified model used here can be written in a form 

 ( )
2 2

3 0 1 0 2

1ˆ
4

p p p p p p p p

p p p

H c c U c c U c c
V

 + + − + +
    
 = +  +  −    
     

    (1) 

 

The Hamiltonian Ĥ , Eq. (1),describes interacting fermions of two bands 1 and 2, while p  

stands for both the momentum pand spin of the fermions. The energies ( ) ( )( )1 2 / 2p p p   = 

are determined by the energy spectra ( )1,2 p  of the bands 1 and 2, the interaction constants 0U

and 
0U  are positive, whereas V  is the volume of the system. Two-component vectors 

 1 2,p p pc c c=  contain as components annihilation operators of the fermions in the bands 1 and 2. 

The matrices 1 2 3, ,    are Pauli matrices in the space of the band numbers 1 and 2. 

 Hamiltonian Ĥ  resembles the Bardeen-Cooper-Schrieffer (BCS) [12] Hamiltonian for Cooper 

pairs but contains a long-range interaction of electron-hole pairs instead of the interaction of 

electron-electron pairs. Usually, such a form of the interaction makes BCS-like mean field 

theories exact. However, the Hamiltonian Ĥ  contains both the inter-band attraction (term with 

2 )  and repulsion (term with 1 ). Neglecting the repulsion leads in the language of SFMOHS to 

emergence of static loop currents oscillating in space with the double period of the lattice [8]. This 

corresponds to a hypothetical d-density wave (DDW) state [13]. It is the repulsion term with 1

that can eventually make the thermodynamic states yielding correlation functions oscillating in 

time energetically more favorable than conventional ones. 

 Calculation of the partition function Z  can be performed using the imaginary-time formalism 

with  in the interval (0,1/ )T  [14]. Writing the partition function Z  as 

 ˆexp /Z Tr H T = −
 

 (2) 

we decouple the interaction terms in the Hamiltonian Ĥ  using a Hubbard-Stratonovich 

transformation. This allows one to compute the trace Tr  over fermion operators and represent the 

free energy F  in a form of a functional integral over boson fields ( )b   and ( )1b   as  
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  1 1ln exp , /F T b b T DbDb = − −   (3) 

where the free energy functional  1,b b equals  

 ( )
( ) ( )2 2

1/
1

,0
0 0

2 ln , ,
T b b

tr h V d
T U U 

 
 

  
 = − + +     

   


p

p  (4) 

  

and  

 ( ) ( ) ( ) ( ) ( )3 2 1 1,h b ib    + −=  + +  −  − p p p  (5) 

The boson fields  ( )b   and ( )1b   obey bosonic boundary conditions 

 ( ) ( ) ( ) ( )1 11/ , 1/ .b b T b b T   = + = +  (6) 

In the limit V → , the form of the interaction between the electron-hole pairs in Eq.(1) allows 

one to calculate the integral over the fields ( )b   and 1( )b   using the saddle point-method. Both 

the terms in the functional  1,b b are proportional to the volume V , and one can obtain the 

physical free energy F , Eq.(2), simply minimizing  1,b b with respect to ( )b   and 1( ).b   

Although the minimum at 

 ( ) ( )1, 0b b  = =  (7) 

found previously [8] is a minimum of  1,b b , there is a region of parameters where the 

absolute minimum is reached at  −dependent functions ( )b   and 1( )b  . 

Non-trivial extrema of  1,b b exist even at ( )1 0.b  = Varying the functional  ,0b  one 

comes to the following equation 

 ( ) ( )
( )

1

0 0 22
,

tr ,
2

d
b U h

 
 



− = −   
p

p  (8) 

In Eq. (8), ( )0 ,h  p is obtained from ( ),h  p , Eq. (5), by putting ( )1 0.b  =  

Equation (7) describes the static solutions of Eq. (8). Although Eq. (8) is generally quite non-

trivial due to a possible dependence of ( )b   on τ, solutions 0 ( )b   can be written exactly in terms 

of a Jacobi double-periodic elliptic function ( )|sn x k ,  

 ( ) ( )( )0 0sn | ,b k k    = −  (9) 

where the parameter , 0 1k k  , is the modulus,  is an energy, and 0 is an arbitrary shift of 

the imaginary time in the interval 00 1/ T  . In the limit 1k → , the function ( )0b  has an 
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asymptotic behavior ( ) ( )| tanhsn x k x→ , while in the limit 1k one obtains ( )| sin .sn x k x→  

   The period of the oscillations for an arbitrary k  equals ( )4 /K k  , where ( )K k is the elliptic 

integral of the first kind, and therefore the condition 

 ( )4K k mT =  (10) 

with integer m, is satisfied to fulfill equations (6). In the most interesting limit of small 1 k− ,  the 

period ( )4 /K k   of ( )0b   grows logarithmically as ( ) ( )( )( )1/ 2  8 / 1ln k− , and the solution

( )0b   consists of 2m well separated alternating instantons and anti-instantons with the shape 

( )tanh .  It is important that the integral over the period of the oscillations in Eq. (9) equals 

zero. Integration over the position 0 of the instant on gives zero as well  

 ( )0 0.b  =  (11) 

The existence of the non-trivial local minima of  ,0b
 

at ( )0b  has been established 

previously [15,16] starting from a different model. Generally, there can be many solutions 

corresponding to different minima of  ,0b  depending on the number m  of instanton-

antiinstanton pairs (IAP). However, the lowest value of the functional  ,0b  is reached at 

0m = corresponding to the static order [4,5,17]. 

    Although putting ( )1 0b  = leads to the correct static solution (7) for ( )b  , the first order of 

expansion in ( )1b  of logarithm in Eq. (4) yields an interaction  1,b b between the fields ( )0b 

and ( )1b   

 
  ( )

( )
1/

1 0 1 0

1

0

,
2

Tb b b
J b d

VT


 




= −

  (12) 

where J is a constant. Eq. (12) shows that the field ( )1b  linearly couples to the time derivative 

of ( )0b  , Eq. (9). The functional  1 0 1,b b
 
is real for 0 0U  . It is this interaction that can 

destabilize the minimum at static b, Eq. (7). Writing  

      1 0 1 0 1, ,0 , ,b b b b b +  (13) 

substituting  1,b b , Eq. (13), into Eq. (4), and calculating the Gaussian integral over 1( )b   one 

obtains an effective instanton-instanton attraction described by the negative contribution 

   ( )
1/

2 2

II 0 0 0
0

,0
T

b U J b d = −   (14) 

that should be added to  0 ,0b . The negative sign in Eq. (14) favors formation of  −dependent 
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structures. 

Calculation of the free energy simplifies in the limit of low temperatures T , when one expects 

large number of IAP in the system, and of small 1 k−  corresponding to a large period of the IAP 

lattice. In this limit, the difference F  between the total free energy F  and the free energy of 

the system with the static order parameter is proportional to 2m . The case ( ) 0F TV   

corresponds to the state with the static order, while in the region of parameters where 

( ) 0F TV   one can expect a chain of alternating instantons and anti-instantons. 

In the limit 1k → , one can write for (2 )F V mT  using Eqs. (4), (13), (14) 

 inst IIF F F = +  (15) 

In Eq. (15), 
instF   is the free energy of the instantons calculated at ( )1 0,b  =  while the 

contribution 
IIF  originates from the term   II 0 ,0b , Eq. (14), of the free energy functional. A 

detailed analysis presented in Refs. [4,5] leads to the conclusion that a region of parameters of 

the model, Eq. (1), exists where 0F  . This means that the state with the static order 

parameter, Eq. (7), is unstable in this region. As a result, one can expect there a structure with an 

imaginary-time-dependent order parameter.  

 

 

3. Correlation functions of real time. Operator order parameter 

   

The periodic structure described by the Jacobi elliptic function ( )0b  , Eq.(9), is actually 

double periodic in the complex plane of τ and, hence, is periodic in real time t. Remarkably, 

( )0b it still satisfies Eq. (8) after the rotation it → . Formally, real-time correlation function can 

be calculated using the functional integrals formalism. One should simply replace it →  and 

integrate over t  from −  to   in the expression for the action. Repeating the steps made within 

the imaginary-time representation one should integrate over functions ( )B t , 1( )B t , instead of 

( ),b   1( )b  . Then, minimizing the action one comes to real-time order parameters ( )B t  and 

1( )B t  periodic in time and related to ( )b   and 1( )b   as 

 ( ) ( ) ( ) ( )0 1 1,iB t b it B t b it= =  (16) 

Again, if ( )B t  and 1( )B t  provide the extremum of the action, so do 0( )B t t−  and 1 0( )B t t−  for an 

arbitrary shift 0t . The Jacobi elliptic function ( )|sn iu k of an imaginary argument iu  is related to 

an elliptic function ( )|sc u k with the period 2 ( )K k  as 

 ( ) ( ) 2 2sn | sc | ' , ' 1,iu k i u k k k= + =  (17) 

and one obtains for ( )B t   

 ( ) ( )( )0sc | ,B t k t t k  = −  (18) 
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where 
0t is an arbitrary shift of time. 

    As the minimum of the action is degenerate, one should integrate over 
0t  when using the 

saddle point approximation. As a result, the averaged order parameter vanishes 

 ( ) 0.B t =  (19) 

In Eq. (19) the bar stands for averaging over the period of ( )B t . 

In order to calculate a 2-times correlation function 

 ( ) ( ) ( )0N t B t B=  (20) 

one can use a Fourier series for the function ( )sc u k  [18]. Integration over 0t  gives in the limit 

1 1k−  [4,5] 

 
2 2 2

1

( ) 2 (2 ), [1 (1/ 2)(((1 ) / 8)) ].n

n n

n

N t f cos nt f k 


=

 = − −  (21) 

 

Function ( )N t  shows an oscillating behavior with the frequencies 2 n . The energy 2  is the 

energy of the breaking of electron-hole pairs, and one can interpret the form of ( )N t  as 

oscillations between the static order and normal state. The contribution of high harmonics n  does 

not decay with n  but apparently this is a consequence of the approximations used. 

    The order parameter 0( )B t t−  appears when calculating fermionic quantum averages 

corresponding to the loop currents, and therefore Eq. (19) shows that physical currents are equal to 

zero at any time t . Non-vanishing oscillations of two-times correlation function ( )N t  allow us to 

classify the physical state found here as thermodynamic quantum time-space crystal. 

    The correlation function ( )N t , Eq. (21), has been obtained after integration over the position 

0.t  Remarkably, the same results for correlation functions can be obtained considering a 

Hamiltonian ˆ
TCH

 
of a harmonic oscillator 

 ,ˆ 2 ( 1/ 2)TC aH a += +  (22) 

where a+  and a  are bosonic creation and annihilation operators. Using the Hamiltonian ˆ
TCH one 

can write the correlation function 1 2( )N t t−  in the form  

 2( ) ( 0 | ( ) (0) | 0 0 | (0) ( ) | 0 ,N t A t A A A t + +=   +    (23) 

where   

 
ˆ ˆ

1

( )
( ) , .

!

TC TC

n
iH t iH t n

n

f a
A t e A e A

n

+
−+ + +

=

= =  

and     stands for the wave function of the ground state of the Hamiltonian ˆ
TCH , Eq.(22). At 
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the same time, quantum averages of the operators A  and A+
 vanish 

 

 ( ) ( )0 0 0 0 0.A t A t+= =  

The operator order parameter A extends the variety of conventional order parameters like scalars, 

vectors, matrices used in theoretical physics. The non-decaying time oscillations is an important 

property for designing qubits. 

    Possibility of an experimental observation depends on systems described by the Hamiltonian 

(1). For cup rates, inelastic polarized neutron spectroscopy can be a proper tool for observations. 

The Fourier transform ( )N   of the function ( )N t  can be compared with the one for the 

hypothetical time-independent DDW result 22 ( ).    As a result, one can write at low 

temperatures the ratio of the responses at ( , )   for these two states as 

 ( ) ( ) ( )0

1

, 2 .n AF

n

f n      


=

= − −q q Q  (24) 

In Eq. (24) the static susceptibility 0  is proportional to the response 
DDW  of the DDW state, 

( ) ( )0 .DDW    =
 
Equation(24) demonstrates that the elastic scattering cannot lead to any 

signal expected for DDW. Actually, anisotropic magnetic ( , )   excitations have been observed 

[19] in 
2 3 6.9YBa Cu O  but more detailed experiments are necessary to clarify their origin.  

 

4. Conclusion  

 

    The main conclusion of the present study is that the quantum time-space crystals may exist as 

a thermodynamically stable state in macroscopic systems. The order parameter of TQTC is 

periodic in both real and imaginary times, but its average over the phase of the oscillations 

vanishes. The non-decaying oscillations can be seen, e.g., in two- or more times correlation 

functions. This leads to a natural generalization of the notion of the space long-range order to the 

time-space one. Two-times correlation functions determine cross-section in inelastic scattering 

experiments. The frequency of the oscillations remains finite in the limit of infinite volume, 

V → . One can expect various experimental consequences and, in particular, one can suppose 

that the time crystal may be a good candidate for the pseudogap state in superconducting 

cuprates.  
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