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Abstract. We investigate the phase dynamics of the stack of long JJs, the length of which exceeds 

the Josephson penetration depth λJ , taking into account the inductive and capacitive couplings 

between junctions and diffusion current. Numerical simulation of current-voltage characteristics of 

the stack is based on numerical solution of a system of nonlinear partial differential equations by the 

fourth order Runge-Kutta method and finite-difference approximation. The calculations are 

performed using the MPI technique for parallel implementation. The methodical calculations on 

multi-processor cluster (LIT JINR) with a different number of parallel MPI-processes are carried out. 

We have shown that the developed parallel algorithm provides about 7 time acceleration in 

comparison with serial simulation. 
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1. Introduction 

The layered high-Tc superconducting materials such as 2 2 2 8Bi Sr CaCu O +   (BSCCO) can be 

considered as a stack of coupled Josephson junctions (JJs) [1]. The interest to the investigation 

of this system is caused by its rich nonlinear properties. The JJs stack demonstrates a series of 

interesting properties such as parametric resonance [2,3,4], chaotic features [5] and in this 

system the fluxons [6,7,8,9] and collective excitations [4,10,11] can arise. Also, this system is 

one of the promising objects of superconducting electronics [12,13]. Coherent terahertz 

electromagnetic radiation from this system provides wide possibilities for various applications 

[14]. The possibility of branching of the current–voltage characteristic in the region of zero field 

step was demonstrated [15], which is associated with different numbers of fluxons in each 

Josephson junctions. In Ref.[16]  we showed the coexistence of the charge traveling wave and 

fluxon states. This state considered as a new collective excitation in the system of coupled 

Josephson junctions. It was demonstrated that the observed collective excitation leads to the 

decrease of radiation power from the system. 

So, the stack of coupled JJs can be considered as a laboratory for studying nonlinear 

phenomena in superconducting nanostructures. Therefore, the construction of a model that 

ensures an adequate description of the properties of the coupled JJs in the high temperature 

superconductors is one of the topical tasks of modern physics of superconductivity. Also, an 

actual problem is the construction of effective numerical algorithms for simulation of the phase 
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dynamics of the stack of JJ. 

To describe the JJs stack in Ref. [17] a model with inductive coupling between JJs was 

proposed. Later, Machida and Sakai proposed the model which takes into account both 

inductive and capacitive couplings [18]. In Ref. [4], we generalized this model with the 

additional diffusion current [19], whose significance was emphasized. 

In this paper, we investigate the effectiveness of a parallel numerical approach for simulation 

of phase dynamics of stacked JJs taking into account the inductive and capacitive couplings 

[17,18] and the diffusion current [20]. Simulation is based on a numerical solution of a system 

of nonlinear partial differential equations by the fourth order Runge-Kutta method, a finite-

difference approximation, and the MPI technique for parallel implementation. The effectiveness 

of the MPI/C++ code is confirmed by calculations on the multi-processor cluster (LIT JINR, 

Dubna). Contributions, which report significant and original research results in different areas 

of physics, are welcomed. 

 

2. Theoretical model and numerical approach 

 Let us consider the layered structure with 1N +  superconducting and interjacent insulating 

layers. The x -and y -axes are directed along the length of JJ L  and along the width of 

superconducting layers W , respectively. The z -axis is perpendicular to the superconducting 

layers. The length of JJ JL   and the width JW  . Each superconducting layer with number 

l  is described by the Ginzburg-Landau order parameter 0| | exp( )l li =  , where l  is the phase 

of the order parameter. The l -th and 1l − -th superconducting layers form the l -th JJ and it is 

described by the gauge-invariant phase difference (1) of the Ginsburg-Landau order parameter 

[18]. 
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where e  - the electrical charge,  - the Plank constant, c  - the speed of light in vacuum and zA  

is the vector potential. In the framework of this model, due to the presence of capacitive 

coupling, the AC Josephson relation is generalized and can be written as 
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where 1 (2 / )coth( / )c e I s eD d d = +  is the effective electrical thickness of JJ normalized to the 

insulating layer thickness Id , / [ sinh( / )]c e I s es d d = −  is the capacitive coupling parameter, lV  

is the voltage on the l -th JJ, sd  is the thickness of superconducting layer, and e  is is Debye 

screening length. The derivative of phase difference l  of l th with respect to the coordinate 

depends on the magnetic field of the l -th JJ and neighbor 1l + -th and 1l − -th junctions. 
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where 
£ £/S s D=  is the inductive coupling parameter, 

£ / sinh( / )L s Ls d = − , 

£ 2 coth( / )I L s LD d d = +  is the effective magnetic thickness of JJ, and 
L  is the London 

penetration depth. The valid values of the inductive coupling parameter S  are in the range 

( 0.5,0]S − . The system of equations, which describes the phase dynamics of the coupled long 

JJs stack in the normalized quantities, can be written as follows: 
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In this system of equations the voltage is normalized to 
0 / (2 )pV e= , where 

8 / ( )p I cd ej  =  is the plasma frequency of JJ, cj  is the critical current of JJ, and   is the 

dielectric constant of the insulating layer. The time t  and coordinate x  are normalized to 
p  and 

J , respectively. Here 0 / ( )I cV d j =  is the dissipation parameter,   is the conductance of JJ, 

and I  is the bias current normalized to the critical current cj . The matrix of inductive coupling 

£  has the form 
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 The initial conditions for the system of equations (4) are ( ,0) 0l x =  and ( ,0) 0lV x = . The 

boundary conditions in the x  direction given by the external magnetic field 

£ 0,( ) / (2 ) / |l x L extc eD x B =  = . In the z  direction we use the periodic boundary condition: in the 

case l N=  1 1l + = , 1 1lV V+ = ; in the case 1l =  1l N − = , 1l NV V− = .  

 

3. Simulation of current-voltage characteristic  

One of the main electromagnetic properties of the system is current--voltage characteristics 

(CVC). In order to calculate CVC, we first of all solve numerically the system of partial 

differential equations (4) for the fixed value of bias current I  and obtain the spatiotemporal 

distribution of the phase difference ( , )x t  and voltage ( , )V x t  of JJs. The details of numerical 
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solution of differential equations are considered in the next section, and here we confine 

ourselves just to the consideration of the algorithm calculation of CVC. Next, we have 

averaged the obtained ( , )lV x t  with respect to the coordinate x  using 

0

1
( ) ( , )

L

l lV t V x t dx
L

=                                                                      (5) 

and with respect to the time t  with expression 
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where 
minT  is the beginning of the averaging interval. The total voltage of the JJs stack can be 

calculated using 
1

N

l

l

V V
=

  =   . Integrals (5) and (6) are calculated using the Simpson method 

and the rectangles method, respectively. Then we change the bias current value by I  and 

repeat the above procedure. In our calculations the bias current increases from the starting 

value 0.01I =  to 
maxI I=  and then decreases to 0I = . 

4. Numerical scheme 

In order to solve the system of eq.(4), we introduce the uniform mesh with the step size x  

in the coordinate x  along JJ and the step size t  in time (Fig.1). 

 

 
 

Figure 1. The uniform spatiotemporal mesh scheme  

 

We denote the discrete coordinate by ( 1)ix x i=   − , where 1, , xi N=   and / 1xN L x=  +  

- the number of coordinate nodes. The discrete time is denoted by ( 1)jt t j=   − , where 

1,2, tj N=  . The 0x =  corresponds to 1x ; and x L= , to 
xNx . In the same way, 0t =  

corresponds to 1t ; and maxt T= , to 
tNt , where maxT  is the end of the time domain. We employ 

the standard second order finite difference approximation in the spatial coordinate x  
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Then we solve numerically the resulting system of ordinary differential equations for a fixed 

value of current I  by the 4th-order Runge-Kutta (RK) algorithm (here l  is the JJ number) in 

the interval [0, ]L  by the coordinate and 
max[0, ]T  by time and obtain the ( , )l x t  and ( , )lV x t  as 

functions of x  and t . We put / 5t x =   in accordance with the Courant-Friedrichs-Lewy 

condition in order to provide stability of the numerical scheme. 

In order to investigate the collective excitations in the JJs stack like the longitudinal plasma 

wave[21] or charge traveling wave[22], we need to calculate the electric charge-time 

dependence in the superconducting layers. In this case, we calculate the electric charge 

normalized to 0 0 / 4 s IQ V d d =  as a function of x  and t  using the expression 

1( , ) ( , ) ( , )l l lQ x t V x t V x t−= − [4]. Then we average the value of ( , )lQ x t  with respect to the 

coordinate x  using the Simpson method. For the external current value corresponding to the 

fluxon states we calculate the magnetic field $B$ in the JJs using the expression 

1

1

£ ( / )
N

l lk k

k

B x−

=

=   . The magnetic field is normalized to 0 / 2 L JB c eD = . 

 

5. Parallel implementation 

 

The parallel algorithm is based on the distribution of calculations in the coordinate nodes ix  

between the group of mP  parallel MPI-processes, where 0,1 ,m M=  . At each time step jt , 

each process mP  calculates the RK coefficients and ( , )l i jV x t , ( , )l i jx t  in the nodes 

min maxi i i  , where min /xi m L M=   and max ( 1) /xi m L M= +  . At each jt  the exchange 

between neighbor processes is arranged: each process mP  ( 1)m M −  sends the RK 

coefficients and values of V  and   at max 1i i= − -th point to the 1mP + -process; each mP  process 

( 0)m   sends the RK coefficients and solutions at mini i=  to the 1mP − -process. In order to 

calculate the average value lV , the parallel calculation of the integral (5) is performed at each 

time-step jt . Each mP -process calculates the partial sum of elements ( , )l i jV x t  at each JJ with 

number l , in accordance with the Simpson quadrature formula. Then the resulting summation 

is performed in the process 0P . In the 0P -process lV  is averaged in time and in JJs number, and 

the resulting value is saved to the file. For some values of I  the solutions ( , )l i jV x t  and 

( , )l i jt t  are collected in the process 0P  where they are saved to the file together with the 

respective physical characteristics.  
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6. Results and discussion 

Let us discuss the effectiveness of the parallel algorithm. The calculations have been 

performed on the multi-processor cluster (LIT JINR) with a different number of parallel MPI-

processes. For these calculations we put the number of JJs 10N =  and 5N = , the JJ length  

5L =  and 10L = ; 0.05x = ; 0.0001I = . Figure 2 shows the calculation time (in minutes) of 

the CVC vs number of parallel processes for the following cases: 10N = , 5L = ; 5N = , 

10L =  and 10N = , 5L = . For all cases the minimal calculation time is achieved in the case of 

12 processes. The ratio of the calculation time of 1 process and 12 processes for the case of 

5L =  and 10N =  (line 1 in Fig.2) is equal to 5.38. The same ratio for the case of 10L =  and 

5N = (line 2 in Fig.2) is equal to 6.1. In the case 10L = , 5N =  the speedup is equal to 6.97 

(line 3 in Fig.2). 

 

 
Figure 2. The dependence of calculation time on the number of processes.  

 

 

One can see that the developed parallel algorithm provides 5 - 7  times acceleration 

(depending on the values of N  and L ) in comparison with the serial simulation. We should 

like to note that the good speed up of calculations can be obtained for the cases of big values of 

JJ length. In order to demonstrate efficient of IV-curve simulation using MPI technique we have 

calculated coefficient of acceleration of simulation depending on process numbers and this 

results are presented in Table 1. 

 

Table 1. Acceleration of IV-curve simulation for stack with 10N =  JJ and length 10L = . The calculation are 

performed using MPI technique with coordinate step size 0.05x = . 

 

Process number 1 2 3 4 5 

Acceleration coefficient 1.000 1.647 2.355 2.991 3.482 

Process number 6 7 8 9 10 

Acceleration coefficient 4.099 4.370 4.879 5.311 5.523 

Process number 11 12 13 14 15 

Acceleration coefficient 6.070 5.593 6.256 6.526 6.734 
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7. Conclusions  

In this paper, we have presented the method of numerical simulation of the phase dynamics 

of the stacked JJs taking into account the inductive and capacitive couplings between junctions 

and diffusion current. In our investigation, we used the parallel and serial calculations of CVC. 

The parallel implementation is based on the MPI technique. We showed that the parallel 

algorithm provides about 7 time acceleration in comparison with the serial one. 
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