Биолог, ж. Армении, т. 40. № 8, 676-678, 1987

УДК 631.465

АКТИВНОСТЬ ФЕРМЕНТОВ СЕРНОГО ОБМЕНА В ГОРНО-ЛЕСНЫХ ПОЧВАХ

3. B. AHTOHAH

НПИ почвоведения и агрохимии Госагропрома Ари ССР, Ереван

Ключевые слова: горно-лесные почвы Армении, активность ферментов, формы серы

Сера является важнейшим элементом питания растений. Основным источником ее в почве являются почвообразующие породы, атмосферные осадки и вносимые удобрения. Содержание и распределение этого элемента в почвах зависят от их генетических особенностей количества гумуса и механического состава. Значительная часть серы в почве представлена в форме органических соединений (60—95% от общего содержания), составляющих ее потенциальные запасы. В доступную растениям сульфатную форму сера переходит после мобилизации [6].

В настоящей работе представлены результаты изучения форм серы и активности ферментов, катализирующих процессы превращения серусодержащих соединений в доступную для растений форму.

Материал и методика Исследования проводили на коричновом, буром и дерновокарбонатиом типах лесных почв. Содержание гумуса определяли по Тюрипу, p11—потенциометрически, поглощенные основания общепринятыми методами [2], формы серы—по методике Айдиняна [1], активность ферментов серного обмена по Галстяну [3]. Активность арилсульфатвам выражали в мг SO₄ на 10 г почим, цистенидениаротенали—мг трифенилформалана (ТФФ) на 10 г почвы, сульфилоксидалы, сульфитоксидалы и сульфитредуктазы—мг SO₃ на 1 г почвы

Результаты и обсуждение. В Армении лесные почвы распространены на низко-горных и средне-горных территориях северо-восточных и юдим районов на высоте 600—2400 м над уровнем моря. Общая площады их составляет 632 тыс. га [5]. Реакция среды коричневых лесных поча—нейтральная, бурых—слабокислая, а дерново-карбонатных—слабоосновная. Эти почвы характеризуются высоким содержанием гумуса—11.3—13.9%, сумма поглощенных оснований составляет 34,2—60,1 мэкв на 100 г почвы. Исследования показали, что валовое содержание серы в верхием горизонте лесных почв высокое и колеблется от 101 мг в бурых до 136 мг/100 г в лерново-карбонатных почвах. Коричневые лесные почвы по этому показателю (125 мг/100 г) занимают промежуточное положение (табл.).

Почва, место, № разреза	Горнзонт, см	Формы серы, мг S на 100 г				Арил-	Цистени-	Суль-	Суль-	Суль-	Cristinge
		валовая	мине- разыная	органи- ческая	волно- раствориман	сульфа- таза	дегидро- геназа	фидок- сидяза	фатре- дуктаза	фиток- сидаза	81/4/2022
Коричневая лесная, Пажеван, 518	An 0-Indier.	•						-			
	A 1-13	125	20	105	1	9.3	4.9	14.6	7.8	28.5	28.8
	A ₁ 13-37	90	32	58	1	6.7	3.8	8.9	3.2	20.5	26.0
	B ₁ 37-50	185	130	55	2	7.4	2.4	6.1	1.4	15.1	17.2
	$B_{\star} = 50 - 90$	180	142	38	-3	4.2	3_2	2.3	0.5	8.9	9.4
	C 90 - 115	120	90	30	2	1.2	0.2	0.0	0.0	(1,4	0.6
Бурая лесная, Дизнжан, 519	A ₀ 0-2										
	A ₁ 2—10	101	30	71	1	10.8	5.8	10.3	5.9	21.6	24.2
	A 10-20	95	40	45	2	6,9	5.4	7.2	4.0	10 2	23.4
	B ₁ 20-36	74	32	42	2	3.7	6.7	3.4	2.0	5.0	11.8
	B ₂ 36-63	74	50	24	4	1.3	2.9	0.9	0.8	2,1	5.5
	C 63 – 105	38	30	8	3	0.3	0.3	0.0	0.0	0.0	2.8
Лерново-карбонатная	A ₀ 0-2										
лесная. Пджеван, 520	$A_1 = 2 - 13$	136	41	95	2	6.4	5.2	18.7	14.0	38.3	32.9
	A ₁ 13 - 26	99	39	60	2	5.5	4.7	9.3	8.3	32,2	28.9
	B, 26-45	105	50	55	3	4.1	3.9	4.0	3,4	23.8	22.4
	B ₂ 45-68	91	51	40	1	1.2	2.2	2.0	0.8	16.8	11,5
	C 68-100	82	72	10	3	0.3	0.7	0.8	1,3	7.2	6.8

В почес сера встречается в двух основных формах: органической и минеральной. В лесных почвах она в основном находится в форме органических соединения. В верхием горизонте коричневых лесных почв органическая сера составляет 84% от валовой, бурых 70,3 и дерновокарбонатных — 70%. Винз по профилю количество органической серы убывает во всех типах лесных почв, что связано с уменьшением содержания гумуса. Что касается наиболее доступной для растений минеральной серы, то ее содержание в верхнем горизонте горио-лесных почи составляет 20-41 мг/100 г, по профилю ее количество увеличивается. Аналогично минеральной по профилю вииз несколько возрастает также содержание воднорастворимой серы, что свидетельствует о ее сравнительно большой подвижности. Горно-лесные почвы, согласно существующей градации [4], слабо обеспечены доступной растениям серой. Она образуется в результате биохимических каталитических процессов, вогорые осуществляются внеклеточными ферментами серного обмена. В системе этих ферментов цействует арилсульфатаза, которая в результате гидролитического расщепления сероорганических соединения со сложно-эфирной связью переводит серу в сульфатную форму. В горнолесных дочвах этот фермент проявляет сравинтельно невысокую акти ность. Они имеют также цизкую активность пистеиндегидрогеназы, окисляющей серу сульфгидрильной группы цистенна.

Окисление сульфидов в горио-лесных почвах происходат интеисва нес, чем восстановление сульфатов, о чем свидетел ствует высокая актимость сульфидоксидазы и сравнительно инзкая—сульфатредуктазы. По-видимому, в почве происходит саморегуляция серного режима с образованием сульфатной формы серы. Процессы окисления и восфановления сульфитов в лесных почвах, осуществляемые соответствующими ферментами, протекают весьма интенсивно. Поэтому сульфиты в почве не накапливаются.

Таким образом, изучение форм серы и активности ферментов серпого обмена поможет более глубокому познанию серного режима почвы-

JUITEPATS PA

- Айдинян Р. Х., Инанова М. С., Соловьева Т. Г. Методы изилечения и определения различных форм серы в почвах и растениях, М., 1975.
- 2. Аринушкина Е. В. Руководство по химическому внализу почв. М., 1970.
- Галетян А. III. Определение активност верментов почв (Методические указания).
 Ереван, 1978.
- Державин Л. М., Рафа син Ж. С. Методические указания по примечению укобрений, содержащих серу. М., 1983.
- 5 Почам Армянской ССР, Ереван, 1976.
- 6. Янг Л., Мон Дж. Метаболизм соединений серы. М., 1961.

Поступило. 15.1 1986 г.