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Abstract: We numerically studied the nonlinear effect of spectral self-compression: the spectral 
analogue of temporal self-compression. The study is done for pulses with random modulations of 
amplitude and phase, and for pulses that have random modulations of both amplitude and phase. 
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1. Introduction 
 

Temporal compression of pulses using media with nanostructures or photonic liquid crystals has 
wide applications nowadays. Recently, compression down to one-two cycle pulses was achieved in 
the process of pulse self-compression [1-4]. Spectral compression (SC) [5-8], the nonlinear process 
in which the pulse spectrum compresses, is the spectral analogue of pulse temporal compression. SC 
occurs when ultrashort laser pulses first travel through a dispersive medium with negative sign of 
dispersion, and then are impacted by nonlinearity in a second medium, for example, through self-
phase modulation (SPM) [9]. This is usually done by passing the pulse through a fiber. The 
dispersive impact stretches the pulse and applies linear chirp (with negative sign). This chirp is then 
compensated by the nonlinear impact in fiber, and results in an output pulse with compressed 
spectrum. Spectral compression demonstrates large variety of applications in different fields, based 
on the space-to-time analogy and the time lens concept [10,11]. Pulse self-compression can occur in 
a fiber, under the combined impact of strong phase modulation and weak group velocity dispersion 
(GVD) [12,13].  Spectral self-compression (SSC), the analogue of temporal self-compression, 
occurs under the combined effect of strong GVD and weak nonlinear self-phase modulation. 
Dispersion delay line applies negative chirp to the pulse, while self-phase modulation compensates 
the chirp, enhancing the compression of pulses [14,15].  

The effect of SSC was simulated for pulses with initial Gaussian temporal profile [16]. SSC was 
experimentally demonstrated for noisy supercontinniuum radiation, where a compression factor of 
4x was demonstrated [17]. 

We report the possibility of SSC for noisy pulses. Here, we numerically simulated SSC of 
pulses with random phase and amplitude modulations. Also, it is demonstrated that the noisy 
components of the pulses are suppressed by to nonlinear effect of SSC.  
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2. Analytics 
 

We analytically examine the process of SSC by comparing the effects of GVD in spectral 
domain and nonlinear self-phase modulation in temporal domain. For slowly varying amplitude 
( A ) of the pulse, and its Fourier transform A , this comparison clearly shows that GVD modulates 
the phase in a parabolic way:  

 

(2.1)  

Analogically to the phase of a self-phase modulated bell-shaped pulse:  

(2.2) 

Modulation step for GVD is the dispersion length 2 1
2 0( )DL β ω −≡ Δ , whereas the self-phase 

modulation step is the nonlinear length 2 1
0 2[ | (0,0) | ]NLL n Aβ −≡ . Here, t and ω  are the “running” time 

and central frequency respectively, 0tΔ  and 0ωΔ  are the normalized duration and spectral width of 
initial pulse, 2n  is the coefficient of the second order nonlinearity, 2β  is the coefficient of the second 
order of dispersion and z  is the spatial coordinate. 

The effect of temporal self-compression occurs under the combined impact of strong self-phase 
modulation and weak negative GVD which compensates the chirp. Thus, the condition necessary for 
the temporal self-compression can be expressed as NL DL L<  . For SSC, the situation is the opposite. 
Strong negative GVD first chirps the pulse, which is then compensated by the impact of weak self-
phase modulation, resulting in a self-compressed spectrum. Hence, the condition of NL DL L>  must be 
kept for SSC.  
 

3. Numerical study 
 

To study the effect of SSC for pulses with noisy nature, we carried out numerical studies based 
on the non-analytical solution of nonlinear Schrödinger equation, taking into account only dispersive 
and nonlinear effects respectively.  

In our studies, we applied noise on top of a regular pulse, and used the result as a test pulse. 
Here, we added randomly modulated amplitude, phase and combined modulations to initial secant 
hyperbolic pulse. To study the SSC process for those modulated pulses, we constructed 3D graphics, 
where the evolution of the temporal and spectral profiles are demonstrated. We carried out 
numerical simulations for different nonlinear coefficients in optical fibers, as well as different fiber 
normalized lengths, up to 500ζ =  ( / Dz Lζ =  is its normalized value of dispersion). 

Firstly, we took into consideration the following amplitude modulation model: 

0( ) ( )[1 ( )]A t A t tσξ= + , where 0( )A t is the secant hyperbolic pulse, ( )tξ  is the white noise, and σ  is 

( ) ( ) 2, , 0 exp[ ( / ) / 2]DA z A i z Lω ω ω= − 

( ) ( ) 2, , 0 exp( / ) exp[ ( / )]N L N LA t z A t iz L it z L≈ −
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the amplitude of the noise. The 3D maps of evolution of temporal and spectral profiles of the pulse 
are shown in Fig. 1(a) and (c), for 500ζ =  normalized length of fiber. The dynamics of the change 
of spectral profile for up to 100ζ =  is demonstrated in Fig. 1(b). This numerical study was carried 
out using the following parameters: nonlinear coefficient of / 0.015D NLR L L= = , normalized 

length of optical fiber of 500ζ = , coherence time of 01 / 3 tτ = Δ  and noise amplitude of 0.1σ = . 
As one can see, the pulse is periodically stretched and compressed during the propagation through 
the fiber. Stretching of the pulse corresponds to the compression of the spectrum and vice versa. For 
above-mentioned parameters, the first spectral compression point (9x compression factor) 
corresponds to 80ζ = . In Fig. 1(b), 0z =  corresponds to the initial spectrum, 50z =  to the first 
SSC point and 100z =  to the second compression point. It is clear, that the noisy component of the 
pulse is suppressed throughout the SSC process in the central energy-carrying part of the pulse.  
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Figure 1: The SSC of pulse with random amplitude modulation: 3D map of temporal profile evolution (a); 
dynamics of spectrum evolution (b); 3D map of spectrum evolution (c). 
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Second, we studied pulses with phase modulation 0( ) ( )[exp( ( )]A t A t i tσξ= . 0( )A t  is the secant 
hyperbolic pulse, ( )tξ  is the white noise, σ  is the amplitude of the noise. Temporal and spectral 
profiles of the pulse throughout propagation in the medium are shown in Fig. 2(a) and (c), for 

500ζ =  normalized length of fiber. The dynamics of the spectral profile for fiber length of up to 
160ζ =  is demonstrated in Fig. 2(b).The following parameters were used in this simulation: 

nonlinear coefficient of 2.2R = , normalized length of optical fiber of 500ζ = , coherence time of 

01 / 3 tτ = Δ  and noise amplitude of 1.5σ = . Here, 3D graphs show the periodic nature of SSC: the 
spectrum compresses and stretches, while the temporal profile stretches and compresses on opposite 
points throughout propagation across the medium. The first spectral compression point (17x 
compression factor) corresponds to 80ζ = .  
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Figure 2: The SSC of pulse with random phase modulation: 3D map of temporal profile evolution (a); 
dynamics of spectrum evolution (b); 3D map of spectrum evolution (c). 
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Lastly, 0( ) ( )[1 ( )]A t A t tσξ= +  amplitude and phase modulation model was used. Here, 0( )A t  is 

the secant hyperbolic pulse, 1 2( ) ( ) ( )t t i tξ ξ ξ= +  is the complex noise, where 1( )tξ  and 2 ( )tξ  are 
white noises, σ  is the amplitude of the noise. The 3D maps of evolution of temporal and spectral 
profiles are shown in Fig.3 (a) and (c) respectively, for 500ζ =  normalized length of fiber. Fig.3 (b) 
demonstrates the spectral profile on different propagation distances up to 70ζ = . Here we used the 
following parameters: nonlinear coefficient of 0.195R = , normalized length of optical fiber of 

500ζ = , coherence time of 01/ 3 tτ = Δ  and noise amplitude of 0.5σ = . On the length of 35ζ =  
spectrum self-compresses for the first time, with a compression factor of 13x.  

Our numerical simulations show the solitonic nature of SSC. The pulse and its spectrum are 
compressed and stretched in opposite points, while the noisy modulations are suppressed: the 
coherence of the pulse increases in central, energy-caring part.  
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Figure 3: The SSC of pulse with random amplitude and phase modulation: 3D map of temporal profile evolution 
(a); dynamics of spectrum evolution (b); 3D map of spectrum evolution (c).  
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4. Conclusion  
 

To conclude, we numerically demonstrated the SSC process for pulses with random noisy 
modulations of phase and amplitude. Furthermore, it is demonstrated that the nonlinear effect of 
SSC suppresses the noisy components of pulses, increasing the coherency of pulses in the central 
energy-carrying part. 
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