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Abstract: An alternative expression of the Poynting vector is presented.  This expression is an 

intrinsic function at the electromagnetic wave description in the method of single expression 

(MSE). The MSE does not represent solutions of the Helmholtz equation as a sum of counter-

propagating waves that permits to operate with an alternative expression for the Poynting vector. 

At the boundary problems solution carried out numerically by the MSE spatial distributions of 

electric and magnetic field amplitudes and the Poynting vector are obtained. An alternative 

expression of the Poynting vector is applicable both in confined media of a positive product of 

permittivity and permeability and of a negative product, that is relevant to the region of 

evanescent waves. The expression of the Poynting vector in the MSE is in complete agreement 

with the traditional representation of the Poynting vector. 
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1. Introduction 
 

The well-known expression for electromagnetic energy flow is the Poynting-Heaviside 
vector [1-3]:  
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 ,       (1) 

 
In media, where electromagnetic wave cannot propagate, for example: in metals and plasma at 
frequencies less than plasma frequency or in optics at the total internal reflection (TIR) from the 
boundary of two dielectric media at the overcritical angles of wave incidence the Poynting 
vector is identically equal to zero [1-3].  However, in thin enough layers of metals [4-6], plasma 
(reentry plasma [7]) or at frustrated total internal reflection (FTIR) [8, 9] an electromagnetic 
wave after penetration to the confined region, where no propagating waves exist, indicates some 
transmitted energy as the fraction of the incident wave. A relevant boundary problem solution 
reveals that a wave penetrates into the medium where it is transformed to the evanescent field 
distributions, namely, exponential decreasing and increasing amplitude distributions [9-11]. 
These are not propagating waves and an application of the expression (1) for this type of a 
confined medium is a complicate procedure. Though partial energy transmission through the 
confined region of evanescent waves is under scientific and technical interest for a long time, 
still no information regarding the energy flow distribution within this type of regions are 
presented in the literature up to now [9-11]. 

Traditional methods of boundary problems solution operate with the Poynting vector only 
outside of the evanescent waves region. As opposed to them in the method of single expression 
(MSE) [12-15] for any boundary problem solution the Poynting vector is calculated within the 
media under analysis. The MSE gives an unusual solution to boundary problems as it operates 
with the alternative expression of the Poynting vector valid in any media including confined 
regions of evanescent waves as well.  



Baghdasaryan et al.|| Armenian Journal of Physics, 2018, vol. 11, issue 4 

236 

 

The aim of the current work is a presentation of the alternative expression of the Poynting 
vector in the MSE suitable for monitoring the power flow distribution within the confined 
region of evanescent waves. As an example, the boundary problem solution by using the MSE 
is presented for a layer of negative permittivity at the wave normal incidence. 

 

2. The method of single expression for the normal incidence of a plane wave 

 
The MSE is an alternative correct tool for wavelength-scale analysis of any multilayer and 

modulated structures comprising dielectric, semiconductor or metallic layers with loss, gain or 
Kerr-type non-linearity [12-15]. The sketch of the boundary problem of normal incidence of a 
linearly polarized plane wave on an arbitrary layer bounded by loss-less and gain-less media is 
presented in Fig.1. 

 

 

 

 
 

 

 

 

 

 

Fig. 1. Normal incidence of linearly polarized plane wave on a layer, from the left. Permittivities of 

surrounding loss-less and gain-less media and in the layer of thickness L  are   , rl  and  ,  correspondingly. 

 

 

The description of the MSE for a plane wave normal incidence on any multilayer or 

modulated structure is the following. From Maxwell’s equations in 1D case the following 

Helmholtz equation can be obtained for linearly polarized complex electric field component 

)(zEx
  propagating along the z  axis (here and hereafter the dot above the letter indicates 

complexity of the value): 
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k  is the free space propagation constant, )()()( zizz  

 is the complex 

permittivity of a medium,  is the permeability. 

At 0)(   z , which means: either double positive ( 0)(  z  and 0 ) or double negative 
( 0)(  z  and 0 ) medium, general solutions of the equation (2) in the traditional approach 
are represented as counter-propagating plane waves. In this case the relevant expression for the 
Poynting vector is: 
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At 0)(   z , which means: either ( 0)(  z  and 0 ) or ( 0)(  z  and 0 ) in the 
traditional approach solutions of the equation (2) are decreasing and increasing exponential 
field distributions and this is a so-called region of evanescent waves. In unbounded region of 
evanescent waves the expression for the Poynting vector is completely imaginary value that 
brings to the absence of energy transfer, i.e. 0)( zPz  [1-3]. However, it is well known, it is 
possible to have energy transfer through a confined region of evanescent waves, i.e. 0)( zPz . 
Though the traditional expression of the Poynting vector is valid to monitor energy flow in such 
regions, but its application is a complicate task. The boundary problem solution by the MSE 
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permits to overcome this problem. The essence of the MSE is a presentation of a general 
solution of the Helmholtz equation for electric field component )(zEx

  in the form of a single 
expression:   

 )(exp)()( ziSzUzEx       (4) 

 
instead of the traditional presentation as a sum of counter-propagating waves. Here )(zU  and 

)(zS  are real functions describing the resulting electric field amplitude and phase, respectively. 
Time dependence  tiexp  is assumed but suppressed throughout the analysis. The solution in 
the form (4) prevails upon the traditional approach of counter-propagating waves and is more 
general since it is not relied on the superposition principle, hence applicable for non-linear 
media as well. This form of solution describes all possible distributions of electric field 
amplitude in space, corresponding to propagating, standing or evanescent waves in a medium of 
a negative product of permittivity and permeability. This means that no preliminary 
assumptions concerning the Helmholtz equation’s solution in different media are needed in the 
MSE. 

Based on the expression (4) the Helmholtz equation (2) after separation on real and 
imaginary parts is reformulated to the set of first order differential equations (5) regarding the 
electric field amplitude )(zU , its spatial derivative )(zY  and a quantity )(zz , which is 
proportional to the power flow density (the Poynting vector) in a medium: 
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here zkz 0  is the coordinate normalized on the wavelength  and 
dz

zdS
zUzz
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actual value  of the Poynting vector )(zPz  can be obtained by multiplication of )(zz  on :
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The sign of )(z   in the set of equations (5) can be taken either positive or negative describing 
relevant electromagnetic features of dielectric and metal (plasma), correspondingly. The sign of 

(z)   indicates loss or gain in a medium. 
The set of differential equations (5) is integrated numerically starting from the non-

illuminated side of a layer at )( Lz  , where only one outgoing travelling wave is supposed. The 

initial values for the integration are obtained from the boundary conditions of electrodynamics 

at the non-illuminated side of the layer (at Lz  ) as: trxELU  )(  , 0)( LY  and 

trztrxrz EL  2
 )(  , where trz  is proportional to the Poynting vector in the medium of 

permittivity r  beyond the layer (at Lz  ) and trxE   is the amplitude of the transmitted wave. In 

linear problem solution the last can be taken as arbitrary. 
Numerical integration of the set (5) goes step by step towards the illuminated side of the 

layer taking into account the actual value of the layer’s permittivity for the given coordinate at 
each step of the integration. In the process of integration it is possible to record any variable of 
the set (5) in order to have full information regarding distributions of electric field amplitude, its 
derivative and power flow density inside and outside of the structure. From the boundary 
conditions of electrodynamics at the illuminated side of the structure the amplitude of incident 
wave incxE   and the power reflection coefficient R : 
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are restored at the end of the calculation. Here )0(U  is the resultant amplitude of the 

electromagnetic wave, )0(Y  is its derivative and )0(z  is proportional to the power flow density 

at the illuminated interface of the layer at 0z , refxE   is the amplitude of the reflected wave, l  

is the permittivity of the medium in the front of the structure, at 0z . The power flow density 

in the left medium (at 0z ) is the sum of two counter-propagating power flows, i.e. incident and 

reflected ones. In accordance with the energy conservation law  )0(  inc refzzz  , where 

2
 incxlincz E   is proportional to the incident power flow density and 2

  refxrrefz E    is 

proportional to the reflected power flow density. The negative sign of refz   is stipulated by its 

propagation opposite to z  axis. The power transmission coefficient 
2
 

2
 

 

 

incxl

trxr

incz

trz

E

E
T














 is 

defined as the ratio of the transmitted trz   to the incident incz   power flows. 

 

3. Monitoring power flow through the confined region of evanescent waves-layer of 

negative permittivity 

 
Let us consider the linearly polarized plane wave interaction with the layer of negative 

permittivity where evanescent waves are observed. Continuity of the traditional Poynting vector 
is fulfilled at the borders, while the relevant expression for the Poynting vector (6) in the MSE 
is calculated numerically throughout the structure without any issues regarding to the signs of 
permittivity )(z  , )(z  and permeability  .  

As a specific example the MSE is applied for modelling of a plane wave incidence from the left 

on the layer (see Fig.1) of the thickness L  of the negative real part of permittivity 1 , at the 

absence of loss or gain 0  and at the loss 2.0  and the positive permeability 1 . The 

calculation results are presented in Fig. 2. Partial transmission through the confined regions of 

evanescent waves is observed for thin enough layers of negative permittivity (Fig.2a,b). At the 

absence of loss in the layer ( 0 ) by increasing the thickness of the layer the reflectance R  

tends  to the 1 (full reflection) and to zero transmission ( 0T ), which is the limiting case for 

unbounded media of negative permittivity when the Poynting vector is zero.  
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                                                  a)                                                                          b) 

Fig.2. Reflectance R  and transmittance T from the layer of negative permittivity versus its thickness L at the plane 

wave normal incidence; a) at 1 , 0 , b) 1 , 2.0 ; TRA 1 is the loss in the layer. 

nm 8500  . 

At the loss ( 2.0 ) in the layer of the thickness L  by an increase of its thickness the 
reflectance tends to the value less than 1 by the expense of loss in the layer (the curve indicated 
by letter A in Fig. 2b.). 
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To go deeply in the physics of the observed dependences it is useful to consider the layer of 

specific thickness, for example, of nmL  200  (Fig.3).  
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                          a)                                                                     b)              

Fig.3 Distributions of electric xÊ  and magnetic yĤ  field amplitudes and power flow vector )(zΠz  within and 

outside of the layer of the fixed thickness nmL  200 . )( 5.0 CGSEESUE trx  , nm8500  , 1 rl  ; a) at the 

absence of loss 0 , 8121.0R , 1879.0T ;  b) at the loss 2.0 , 6856.0R , 1568.0T , 1576.0A . 
 

 

A superposition of incident and reflected waves at 0z  creates the region of partial standing 

wave (oscillating amplitudes of electric xÊ  and magnetic yĤ components). Within the layer an 

exponential decrease of both amplitudes is observed (Fig.3a,b).  

A continuity of the power flow at the boundaries is clearly observed in the modelling. At the 

absence of loss or gain ( 0 ) the power flow within the layer is constant and equal to the 

transmitted power flow (Fig. 3a). The transmitted power flow 2
  )( trxrtrz EL   is equal to 

Lz

z
zdk

zdS
LUL


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0

2 )(
)()( at the output of the layer ( Lz  ) and within the layer ( Lz 0 ). At the 

illuminated side of the structure in accordance with the energy balance law the sum of incident 

and reflected power flows is equal to the power flow within the layer.  

  At the loss in the layer ( 2.0 ) an exponential decrease of the Poynting vector in the 

region of evanescent waves is observed (Fig.3b). Thus, the loss in the region of evanescent 

waves is also possible to monitor by the MSE.   

 

 

4. Conclusion 
 

 The expression of the Poynting vector (6) in the MSE is a valid alternative to the traditional 

one, especially useful for the region of evanescent waves and making it a unique instrument for 

analyzing energy flow within any media. 

The MSE makes also possible to monitor power flow in the confined region of evanescent 

waves at electric and magnetic loss or gain by application of complex values   i and 

  i  [16,17] and at the plane wave oblique incidence [18-20].     
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