ность), то, еледовательно, для получения M_2 желательно использовать семена всех продуктивных колосьев растений M_1 , как было смазано выше

Подсчет растений исходной и мутантной форм ноказал, что соотношенке их составляет в среднем 12,5:1,0. Если для получения M_2 брать по 1—2 семени от каждого растения, то нероятность обнаружения мутации резко синжается, и вряд ли такой подход может быть эффективным для отбора ценных мутаций. Поэтому считаем целесообразным брать с каждого колооа растений M_1 по возможности больше семян, желагельно не менее 20.

JUTEPATYPA

- 1. Борейко В. С., Сичкарь В. И. Цитология и генетика, 8, 2, 1971.
- 2 Бригге Ф., Ноула П. Научные основы селекция растений М., 1972
- 3. Гулян А. А., Саакян А. Г. Изв. с.-х. наук. МСХ АрмССР, 6, 1983 (на армянском языке).
- Зоз Н. Н., Дебуль Ф. А., Хуцишвили Г. А. Сб. Химический мутагенез и создание селекционного материала, М., 1972.
- 5. Рапопорт И. А. Сб. Эффективность химических мутагснов в селекции, М., 1976.
- 6. Сальникова Т. В. Сб. Химические супермутагены в селенции. М., 1975.
- 7. Хвостово В. В., Эйгес Н. С. Цитогенстика пшеницы и ее гибридов М., 1971
- 8. Шлальи Х. Селекция растений, М., 1973.
- 9. Gaul II. In: Effects of ionizing radiations on seeds. Vienna, IAEA, 1961.
- 10. Mac Key Y. Hereditas, 47, 1-2, 1954.
- II. Redei G. P. Z. pilanzenzenzucht, 73, 1974.
- 12. Yoshida Y. Jap J. Cen. 40, 125, 1965.

Инститит земледелия Госагропрома Армянской ССР

Поступило 17.1Х 1981 г.

УДК 633.11.575.113

О СЛОЖНЫХ ГИБРИДАХ ПШЕНИЦЫ С РАЗЛИЧНЫМИ ФЕНОТИПАМИ ГИБРИДНОЙ КАРЛИКОВОСТИ

M. X. KASAPHH

Ключевые глова: пшеници, гибридная карликовость, множественные аллели

Наличие множественных заллелей того или яного гена увеличивает комбинативную изм. ичивость организмов. В работах, опубликованных нами ранее [1, 2], дана предварительная оценка сортов мягкой ищенины по силе аллелей генов гибридной карликовости на основании изучения простых гибридов F_1 . Для уточнения силы аллелей генов A_1 . A_2 , сочетания A_2A_3 (с Th_0 и Th_2), обусловливающих явление гибридной карликовости, мы задались целью получить и изучить F_1 сложных (тропных) гибридов с раздичными фенотипами h. dwarfness.

Материал и методика. В исследования включены следующие сорта и образцы ищемины: Канберра (Π_1^5) , субиерманиахи (Π_1^m) , Вандияла (Π_1^m) , Калинииская $\Pi_1(\Pi_1^5)$, Кубанская 122 (Д *). Горинкая местивя (Д *). Московская 2460 (Д *). Пуза 12 $(A_2A_3Th_0$, Завиславка $(A_2A_3Th_0^{m_1-m_1})$, РПГ 49/49 $(A_2A_3Th_0^{m_1-m_1})$, Асканийская 25 $(A_2A_3Th_2^2)$, Степпячка 30 $(A_2A_3Th_2^{--w1})$, Бельпкая 32 $(A_2A_3Th_2^{sm-w})$, Одесская 12 $(A_0A_0Th^{-\kappa})$, Фриско (A_1A_3) . Символом в обозначены сильные адлели соотвстствующих тепов, тіз- умеренно-сильные, ті умеренные, win- умеренно-слабые, v слабые, wt - сверхслабые. Контролем для сложных гибридов - служиди ях соотьетстьующие простые и троиные гибриды, полученные с участисы сортов со слабыми иллелями генов гибридной карликовости. Наличие или отсутствие различных валелей енов h. dwarfness установлено по срокам наступления фенокритической и эффективной летальной фаз, а тякже по типу образовавшихся diewy-растений. По отсутствио различно в проянлении фенокритической фазы и типе dworf-растений у сложных гибридов с фенотипом dwarf 2 и dwarf 3 судили о наличии одинаковых аллелей данного тена. У гибридов с фенотипом dwar/ I различия в силе аллелей устанавливали по срожам наступления эффективной летальной фазы у гибридных растений. В случае расщелления сложных гибридов фенотипически на 2 группы растения, і. с. при выявлянии двух сроков проявления фенокритической (у гибридов dwarf 2 и dwarf 3) или ффективной летальной (у гибридов dwarf 1) фаз уточники изличие разлик эллелей илучаемого тена.

Результиты и обсуждение. Исследования показали, что сложный гибрид F₁ (КанберраХсубкерманшахи) ×Пуза 12 имсет два срока проявления фенокритической фазы (в возрасте 2-х листьев и в фазе полисго кушения). В соответствии с этим возникоют растении двух типовdwarf 1 и dwarf 2. Если не учитывать природы множественных аллелей генов гибридной карликовости, то у этого гибрида теоретически можно ожидать образование растений с фенотином dwarf 2. Однако именно различие в силс аллелей гена. Длу сортов Конберра и субкерманшахи ведет к возникновению гибридных растепий с двумя фенотипами-dwari 1 (летальный, непродуктивный тип) и dwari 2 (полудетальная, продуктивная форма). О разных аллелях одного и того же гена (Дт) у сорта Қанберра и образца субкерманиахи (разновидность из популяции сорта Дир) свидетельствуют и простые сибриды F₁. Тах, фенокритическая фаза у гибрида Пуза 12×Канберра наступает одновременно с таковой той части растений сложного гибрида F1 (КанберраХ субкерманшахи) ×Пуза 12. которая образует тип dwarj 1 (на 20-й день после появления всходов, в возрасте двух листьев). Совналают также ероки наступления фенокритической фазы у простого габрида Пуза 12× субкерманшахи и той части растений сложного гибрида 👫 (КанберраХ тубкерманшахи)×Пуза 12, которая образует тип dwarf 2 (на 24-32-4 день после появления всходов, в фазе полного кушения). Таким образом, подтверждается наличие сильного аллеля гена Д1 у сорта Каиберра (Д)) и слабого его аллеля у образна субкерманиахи (Д*).

Выявление только одного срока проявления фенокритической фазы у другого сложного гибрида, F_1 (Вандилла×субкерманшахи)×Пува 12, и образование одного типа карликовых растений (dwarf 2) говорят о наличии одинаковых аллелей гена A_1 (A_1^m) у сорта Вандилла и образва субкерманшахи. Этот гибрид, в свою очередь, может служить дополнительным контролем для гибрила F_1 (Канберра×субкерманшахи)×Пува 12, у которого обнаружены два срока фенокритической фазы

и соответственно выделены два феногинически различных гипа карликовых растоний.

Результаты изучения сложного гибрила F₁ (Калининская ПХКубанская [22] × Фриско свидетельствуют о наличии множественных аллелей гена Д2. В этом случае теоретически ожидается возникновение леталь ных растений dwarf 1. Однако в течение вегетационного периода нами были обнаружены два типа гибридных растений. Часть их в соответствии с теоретически ожидаемым результатом образовала dwarf 1 и погибла на 20-25-й день после появления всходов в фазе кущения. Остальные растения в течение вегетации вступили в фазу колошения и ч 86-му дию после появления асходов проявили продуктивный фенотип dwari 2. Таког расијепление сложного гибрила F1 (Калининская 11× Кубанская 122) × Фриско говорит о наличии сильного иллеля гена Д2 у сорта Калицииская 11 и его сверхелабого аллеля у сорта Кубанская 122. о чем свидетельствуют соответствующие простые гибриды. Однообразне гибридных растений (dwarf 1) и один срок проявления эффективной летальной фазы у сложного гибрида F₁ (Горицкая местная×Московская 2460) ХФриско в их соответствующих простых гибридов подтвердили валичие одинаковых аплелей гена Д2(Д*) у сортов Горицкая нестная и Московская 2460.

Авализ сложных гибридов F_1 (Пува 12×Здзиславка) × Канберра и F_1 (Здзиславка × РПГ 49/49) × Канберра показал, что сорта Пува 12 и Зазиславка имеют разные аллели генов $\Pi_2\Pi_3$ Тh₂ (s и ms-m соответственно), в то время как сорта РПГ 49/49 и Здзиславка являются носителями одинх и тех же аллелей (ms-m).

Для подтверждения или отрицания наличия множественных аллелей у сортов с генами $\Pi_2\Pi_3$ Th₂ были изучены сложные гибриды F_1 (Асканийская $25\times$ Степиячка $30)\times$ Канберра и F_1 (Бельцкая $32\times$ Одесская $12)\times$ Канберра. Теоретически у этих гибридов ожидается образование растений с фенотипом dwarf 3. Однако при анализе сложного гибрида F_1 (Асканийская $25\times$ Степиячка $30)\times$ Канберра обнаружены два срока проявления фенокритической фазы и соответственно—две группы растений (с фенотипом dwarf 2 и dwarf 3), что указывает на паличие разных по спле аллелей генов $\Pi_2\Pi_3$ Th₂ у сортов Асканийская 25 (в) и Степияка 30 (w-wi). Сложный гибрид F_1 (Беленкая $32\times$ Одесская $12)\times$ Канберра отличался однообразием гибридных растений (dwarf 3) и имел один срок проявления первых признаков h. dwarfness. Эти факты подтвердили наличие одноваковых аллелей генов $\Pi_2\Pi_3$ Th₂ (wm-w) у сортов Бельнкая 32 и Одесская 12.

Полученные экспериментальные данные свидетельствуют о наличии серии множественных аллелей генов Π_1 , Π_2 и сочетания $\Pi_2\Pi_3$ (с Π_0 и Π_2), контролирующих явление гибридной карликовости.

Обобщая результаты исследований, можно прийти к следующему заключению:

при изучении F_1 простых и сложных гибридов с фенотивом гибридой карликовости обнаруживается одна и та же закономерность в отношении того или иного гена h. dwarfness. Исходя на этого, предлагаем в дальнейшем изучение множественных аллелей генов гибрид-

ной карликовости у новых сортов ишеницы вести на уровие первого поколения простых гибридов. Это даст возможность сократить сроки исследования и тем самым новысить результативность работы;

сорта и образцы со слабыми и сверхслабыми аллелями генов Д₁ (Вандилла, субкерманшахи) и Д₂Д₃Th₂ (Степнячка 30, Бельцкая 32, Одесская 12) можно использовать в гибридизационных программах для получения продуктивных и мощных гибридов типа dwarf 3.

ЛИТЕРАТУРА

- 1. Бабаджанян Г. А., Саркисян Н. С., Казарян М. Х. Биолог ж. Армении, 35, 12, 966—971, 1982.
- 2. *Казарян М. X.* Тез. докл. XI респ. конф. молод, науч. сотр. н аспир. Груз. ПИИЗ, 1981.

Институт земледелия Госагропрома Армянской ССР, отдел селекции и сенетики

Поступило 19.1Х 1984 г.

УДК 57635

ЦИТОГЕНЕТИЧЕСКИЙ ЭФФЕКТ АКТИНОМИЦИНА-D НА КЛЕТКИ КОРЕШКОВ CREPIS CAPILLARIS

Е. Г. СИМОНЯН, Г. Г. ОГАНЕСЯЦ

Ключевые слова октиномиции-D, митотическая октивность, цитогенетический эффект.

Механиям действия актиномицинов был предметом исследования многих авторов [4—6]. Большниство их полагает, что актиномиции нарушает бносинтеа РНК [9, 10]. Существует мнение об особой чувствительности к актиномицину р-РНК. В основе подавления актиномицином синтеза РНК лежит взаимодействие антибиотика с ДНК, в результате чего происходит как бы аключение антибиотика в молекулу ДНК, препятствующее взаимодействию с ней РНК-полимеразы. В связи с нарушением синтеза РНК, вызываемым актиномицином, угнетается синтеза белка [8].

В клетках корсніков лука под влиянием актиномицина наблюдался митодепрессивный эффект [3]. Высокие концентрации антибнотика вызывали массовую гибель клеток. Изучение взаимодействия актиномицина с пругими химическими факторами показало, это кинетин является его прямым конкурентом и ослабляет антимитотический эффект актиномицина [1, 2].

В настоящем сообщении приводятся результаты изучения воздействия различных доз и экспозиций актиномицина-D на митотическую активность меристематических клеток корешков Crepis capillaris.

Митериал и методика. Ст. capillaris—растение семейства сложионаетных — палается удобным тест-объектом для интогенстических исследований. Корешки Ст. capillaris обрабатывались актиноминином D фирмы Reanal [Budapest, Hungary] трех кон-