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Abstract: In this presentation a validity criterion for the Born approximation is examined for 
elastic scattering on a finite range radially symmetric potential in multidimensional space. Our 
analysis utilizes the transformation properties of the radial Schrödinger equation for S waves. The 
analytic structure of criterion is found to yield the corresponding results for low dimensional cases 
in a rather natural way. Some peculiarities of perturbative scattering in 2+Ω dimensions are 
brought out. 
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1. Introduction 

 
 
   The Born approximation [1] is a valuable computational scheme often used in studies of 
forward and inverse scattering problems in quantum mechanics [2-4] and cross-disciplinary 
fields (see, e. g., [5-8]). For the Schrödinger collision problem involving a radially symmetric 
potential [ ( ) ( )=U U rr ] in three space dimensions ( 3=D ), a widely accepted criterion for the 
validity of the Born approximation is described by the expression [3, 4] 
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where m is the mass of the particle propagating with the de Broglie wavelength 2 / kλ π= and 
collision energy 2 2 / 2E k m=  . In the short-wavelength limit, 
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when the scattered intensity is essentially concentrated within a narrow forward cone [2] of 
angular width Θ , the inequality (1) produces the restrictive relation [2, 3], 
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in which 0U  is the characteristic strength of the potential with influence range a . A look at the 
scaling relation in (2) shows that at high incident energies (fast collisions) the leading term of Bγ  
is controlled by the forward cone angle Θ ∝ λ . 
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   In this contribution, a procedure is described for examining the progenitor of the validity 
criterion (1) in D spatial dimensions [9-16]. Our treatment proceeds along heuristic lines and 
utilizes the D-dependent transformation properties of the radial Schrödinger equation. Since the 
information about the orbital angular momentum of the scattered particle is not represented in 
Eq. (1), we will specifically deal here with the case of collisions in the S  wave channel.  
 

2. Heuristic considerations 
 

   We begin our analysis by noting that for an S  wave particle interacting with a central force 
field in D   space dimensions the radial wave function, ( )rΦ , satisfies the differential equation 
[10-13,15,16], 
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in which  

2
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is the reduced potential. One may reorganize Eq. (3) to make it look like a radial wave equation 
for a particle in three space dimensions by eliminating the first-order derivative term through the 
ansatz [12, 13,15,16], 
  

( 1) / 2( ) ( )Dr r rφ− −Φ = .     (4) 
 
Insertion of (4) into (3) leads to Sturm-Liouville equation, 
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where the D -dependent object, ( )l l D= , determines the properties of the centrifugal barrier (or 
centripetal potential well) and is given by  

3
2
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According to Eqs. (3)−(6), the S wave problem in continuous radial D  dimensions [12, 13] 
becomes equivalent [12, 15] to familiar l -wave problem [2−4] in the three-dimensional 
configuration space.  
   Taking advantage of this equivalence, we may proceed further by using the fact that in the l -th 
partial wave channel the radial (outgoing wave) Green’s function associated with (5) behaves as 
[17], 
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where ( )J zν  is the Bessel function and (1) ( )H zν  is the Hankel function of the first kind. A careful 
examination of Eq. (7) reveals that the fundamental structure of the integrand appearing in Eq. 
(1) can be interpreted in the following physically transparent way, 
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with important supplementary information provided by 
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By relying on such an interpretation and employing Eq. (6), we arrive at the conclusion that the 
multidimensional analogue of the validity criterion (1) is given by inequality  
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This formula demonstrates explicitly how the k -dependent features of perturbative scattering in 
a central field of force become correlated with continuously changing radial dimensions. In 
particular, one may clearly see from Eqs. (6), (8c) and (9) that in the limit of vanishing incident 
energy [18] the object ( 0, )B k Dγ →  can exhibit non-divergent character when the condition 

2D > is fulfilled. At this juncture, it is necessary to emphasize the following: the Born 
perturbation expansion [1] has been extensively studied for more than 90 years, and the 
bibliography accumulated in this area of research is vast. It is therefore not unreasonable to 
presume that our heuristically constructed D -sensitive form (9) might have been enunciated in 
some earlier publication(s). However, up to this moment we have not been able to spot an 
appropriate reference to this issue. Let us remark that it is also possible to incorporate particle’s 
grand orbital angular momentum [10,15,16] into the mathematical structure of the inequality (9) 
via straightforward generalization [19] of considerations presented herein. 
 
 

3. Different faces of ( , )B k Dγ  
 

   It is a simple matter to verify that for the familiar three-dimensional case ( 0)l =  the expression 
(9) obviously agrees with Eq. (1), as it should. For the case of two-dimensional potential 
scattering ( 1/ 2)l = − , the construction (9) also automatically reproduces the analytic structure of 
the corresponding criterion [20],  
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In one dimension ( 1,l = − ,r x= ( ) ( )U x U x− = ), Eq. (9) reorganizes into  
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and shows, in its own manner, how the Born approximation is destined to fail [2] in the long-
wavelength limit 0k → . We may also mention, for the sake of completeness, that if the one-
dimensional potential is globally attractive and shallow [21], 
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then the threshold condition,  
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rigorously gives in an alternative and succinct way the asymptotic expression [2, 21] for the 
eigenenergy 0 0E <  of the weakly bound state: 
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An additional facet of the Born approximation scattering event [9, 11, 12, 14] can be 
unraveled by examining the Bγ −versus− D  behavior in 2D = + Ω  dimensions. Working from 
Eq. (9), we obtain in the short-wavelength domain a restrictive relation, 

  

1 >> =
ΩB
Iγ ,  1kaΩ >> >> ,    (12) 

 

which is clearly anomalous from the standpoint of the customary scaling relation (2). The 
principal inference to be drawn from (12) is that in extra [16, 22] dimensions 1(1 )−>> Θ >> Ω  the 
leading term of Bγ  is no more under control of such basic parameter [2] of wave-mechanical 
scattering theory as cone angle Θ . It is quite remarkable that the specific wave vector window 
originating in (12) becomes heavenly wide in the asymptotic limit of infinite ( )Ω → ∞  
dimensions [11,13]. One may notice, at the same time, that this peculiar window disappears from 
stage (becomes invisible) when a transition is made to the opposite extreme, 1kaΩ → →  
(i.e., 3D → ). Under such transition, Bγ of (12) descends to three-dimensional world and exhibits 
the familiar structure of Born’s constraint for slow ( ~ 1)Θ collisions [2, 3], 
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