
 Armenian Journal of Physics, 2018, vol. 11, issue 2, pp. 66-72 

Transmission resonances in reflection of Bose-condensates  
by a symmetric rectangular double-barrier potential 

 
V.A. Manukyan1,2 

 
1Russian-Armenian University, H. Emin 123, 0051, Yerevan, Armenia 

2Institute for Physical Research, NAS of Armenia, 0203 Ashtarak, Armenia 
E-mail:manukyanvahe@gmail.com 

 
Received 26 March 2018 

Abstract. Within the framework of the mean-field Gross-Pitaevskii approximation, we investigate 
the transmission resonances in quantum above-barrier reflection of Bose-Einstein condensates by a 
symmetric rectangular double-barrier (double-well). We present a rigorous analysis of the problem 
based on an exact third order nonlinear differential equation written for the probability density. We 
show that in general the set of transmission resonances is split into two series of distinct nature. 
One subset of resonances occurs in the case when the single barrier itself supports a resonance. In 
this case, the separation distance between the two barriers does not play a role: the transmission is 
always resonant for any distance between the two involved barriers. Another subset corresponds to 
the case when the single barrier itself does not support resonance transmission. We show that in 
this case there exists an infinite set of periodically located separation distances between the two 
barriers that support complete transmission of the condensate across the double-barrier potential. 
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1. Introduction 
In 2005 the quasi-continuous flow [1-2] of Bose-condensed atoms [3-5] was realized 

experimentally. In the mean-field regime, the dynamics of Bose-condensates is described by the 
Gross-Pitaevskii equation, which in the one-dimensional case is written as [6-8] 
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Here, the nonlinearity parameter g  determining the mean-field self-interaction is given 

through the s -wave scattering length sa  for binary elastic collisions of two interacting bosons of 

mass m  as 24 /sg a mπ=  , and ( )V x  is the external field's potential. The nonlinearity parameter 
may be negative or positive, corresponding to attractive or repulsive atomic interactions 
respectively. 

In the present paper, we consider the quantum transmission of Bose-condensates above a 
symmetric double-barrier potential. Though the repulsive interactions are more common in 
experimental condensates, our treatment is applicable to both repulsive and attractive cases. The 
reflecting potential we consider consists of two identical finite-height/depth rectangular 
barriers/wells of width a  which are separated by distance b , that is, we assume that 0( )V x V= , 
where 0V  is a positive or negative constant, if [0, ] [ , ]x a a b a b a∈ ∪ + + +  and ( ) 0V x =  
elsewhere (Fig.1): 
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Fig.1. Transport of a Bose-Einstein condensate across two rectangular barriers of width 2.25a =  and 

height 0 0.6V =  (dotted line) separated by distance 3.66432b =  at 0.02g =  under resonance ( 2μ = , 

solid line) and non-resonance ( 1.75μ = , dashed line) conditions. 
 
 
2. Single barrier case 
  
Applying the ansatz ( , ) exp( / ) ( )x t i t xμ ψΨ = −  , where μ  is the chemical potential for a 

conserved number of particles, equation (1) is reduced to the following stationary version 
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(we use the units 1m= = ). Applying further the transformation ( )( ) ~ i xx pe θψ , one can 

show that the probability density 2( )p xψ=  obeys the following exact third order nonlinear 

differential equation [9] 
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, (4) 

 
where the prime denotes differentiation with respect to x . Since we look for a solution with 

traveling-wave-like asymptotic behavior 0( ) ~ ikxeψ ρ−∞ , 02( )k gμ ρ−= , the function ( )p x  

obeys the initial conditions 
 
 0( )p ρ−∞ = ,   ( ) 0p′ −∞ = ,   ( ) 0p′′ −∞ = . (5) 
 
Since it follows from the Gross-Pitaevskii equation that the normalization of the wave 

 

−2 2 4 6 8 10

x 

0.5

1.0 

1.5 
 p

0V

aa b



Manukyan || Armenian Journal of Physics, 2018, vol. 11, issue 2 

 68

function can always be incorporated into the definition of the nonlinearity coefficient g , without 
loss of generality we choose the normalization 0 1ρ =  so that we assume ( ) 1p −∞ = . The 
boundary condition for reflectionless transmission through the barrier then reads 

 
 ( ) 1p +∞ = . (6)  
 
Note that this condition defines a nonlinear eigenvalue problem for equation (4). 
Consider the solution of equation (4) in the region [0, ]x a∈ . For a constant 0V , the equation 

is twice integrated to produce the following first order equation 
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Examination of the initial conditions at 0x =  shows that (0) 1p = , (0) 0p′ = , 0(0) 4p V′′ = . 

Then, in order to match the solution of equation (7) with ikxeψ =  which is valid for 0x ≤ , one 
should choose 

 

 0aC g μ= −    and   1 0
3 2
2a
gC V μ= − − + . (8) 

 
Equation (7) is then rewritten as 
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where 02( )ak g Vμ − −= . Applying now the transformation 2

11 ( )ap e u bx= +  with 

2ab ge=  for 0g >  (repulsive interaction), this equation is straightforwardly reduced to the 

equation obeyed by the Jacobi elliptic sn  function [10]: 
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Accordingly, the solution of the problem in the region [0, ]x a∈  is written as 
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This is a periodic function with the period given in terms of the Gauss ordinary 

hypergeometric function 2 1F  as 
 

 2 1
2

= (1/ 2,1/ 2;1; )a a
a

T F m
ge
π . (13) 

 
Reflectionless transmission occurs if ( ) ( ) = 1p a p= +∞ . The derived solution (12) shows that 

this condition is fulfilled if 
 
 aa nT= ,   1, 2,3, ...n =  (14) 
 
In the linear limit 0g =  the period of the solution becomes 0 0/ / 2( )a aT k Vπ π μ= = −  so 

that for the linear resonances we have the known result [11] 
 

 
2 2

2( 0)
2Ln

nV g
a

πμ= = − . (15) 

 
In the nonlinear case 0g ≠ , equation (14) is a complicated transcendental equation with no 

known exact solution. However, one may try to construct a simple approximation applying a 
power series expansion [12,13] for relatively small nonlinearity parameter g . In this way, one 
obtains the following approximation for the nonlinear shift of the resonance position 
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This formula confirms our previous result derived by applying a different approach [14]. 
In the region x a>  applies the same equation (7), where now one should replace 0V  by 0 and 

apply the initial conditions ( ) ( )ap a p a= , ( ) ( )ap a p a′ ′=  and ( ) ( )ap a p a′′ ′′= . Using equations (7) 
and (12), after some straightforward algebra, one obtains that the integration constants 0C  and 

1C  in this case read 
 
 0 0b aC C=    and   1 1 0b a aC C V p= + , (17) 
 
where 0aC  and 1aC  are defined by equations (8). This leads to the following equation for the 

dynamics in the region x a> : 
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The general solution to this equation is again written in terms of the Jacobi elliptic sn  

function. Let 0,1,2p  are the three roots of the cubic polynomial equation defined by the right-hand 

side of equation (18) so that the equation is rewritten as 
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Let 0p  is the smallest positive root and 1 2p p< . Then for positive 0g >  the solution ( )bp x  

of the equation for x a>  is written as 
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equation (20) defines an oscillatory, periodic function with the period given as 
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Since the amplitude of oscillations is given by 1be , it is understood that transmission 

resonances occur if 1 0be = . Since, additionally, should be 0 1p = , we see that resonances occur 
when 0 1 1p p= = , that is when the cubic polynomial equation defined by the right-hand side of 
equation (18) has a multiple root equal to 1. Because then the solution for the whole region 
x a>  is ( ) 1p x a> ≡ , it is seen from equation (18) that should be 1ap =  and this is a necessary 
condition. 

 
3. Double-barrier case 
Now, let us add a second barrier. If a single barrier itself supports a resonance, then, 

obviously, double barrier will do so (irrespective of the distance between the barriers). This is the 
first subset of resonances, since one barrier can support a resonance for different heights 
(approximately given by equation (16)). 

However there exists another subset, corresponding to the case when a single barrier itself 
reflects the incident matter-wave but with a right choice of the distance between them one arrives 
to the complete transparency of the double barrier. Since the barrier is symmetric, a solution for 
the probability density, corresponding to the total transmission resonance should be symmetric 
too, and this means that at the points x a=  and x a b= +  the probability density of the 
condensate should have the same value. Thus, 

 
 ( 1/ 2)ab T n= + ,   1, 2,3, ...n =  (23) 
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For a fixed set of parameters of the problem (barrier width a , nonlinearity parameter g , 

chemical potential μ  and barrier height 0V ) aT  is a constant which means that there exists an 
infinite set of periodically located separation distances between the two barriers that support total 
transmission of the condensate across the double-barrier potential. 

Extending this result to the case of multiple identical rectangular barriers, we note that if a 
single barrier supports a total transmission resonance, then the composite potential will do the 
same. However, if a single barrier is not of the resonant height, the composite barrier will 
support a resonance only if it consists of even number of barriers (of course, provided the 
distance between them is chosen according to equation (23)). In the case of odd number of 
barriers, if the distance is well chosen, the whole construct will scatter the incident matter-wave 
(atomic laser) as an effective single barrier. 

 
4. Conclusion 
Thus, we have presented the exact solution of the Gross-Pitaevskii equation for matter-wave 

propagation above a symmetric double-rectangular barrier written in terms of the Jacobi elliptic 
functions. We have shown that there exist two distinct series of above-barrier transmission 
resonances. First, if a single barrier itself produces zero reflection, the set of two such barriers 
will also provide a transmission resonance. However, even if one rectangular barrier itself is not 
of resonant height, the addition of a second one, put on a certain distance, may result in a total 
transmission. This may be used, in particular, to recover the information distorted by the action 
of a scattering barrier, via adding a second barrier of the same form. 

The presented observations may concern to other situations of the dynamics of a quantum 
many-body system in a double-barrier potential, for instance, π -electron transport in a single-
wall carbon nanotube with two point impurities (say, non-carbon atoms). Indeed, the self-
interaction of such electrons is described by the Gross-Pitaevskii-type mean-field approximation 
and point impurities in a single-wall carbon nanotube serve as scattering centers for the 
electrons. Charge carriers in 1D are confined to a single trajectory and cannot avoid the 
scattering centers nor scatter into nearby momentum states. The interest in properties of such 
non-ideal nanotubes is due to their applications, e.g., as one-electron transistors that work at 
room temperature or as chemical sensors [15]. For other possible applications, one may further 
discuss the above-barrier reflection with a periodic potential as a generalization of the symmetric 
double rectangular barrier discussed in the present paper. 
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