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Abstract. Three-body effects are studied for both asymmetric nuclear matter and pure neutron 
matter to calculate the nuclear Equation of State (EOS). The Brueckner-Hartree-Fock (BHF) 
approximation is used using CD BonnB and Argonne V18 potentials. A two-body density 
dependent Skyrme potential is added to reproduce the empirical saturation point. Good agreement 
is  obtained in comparison with exact calculation including three-body forces.  
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1. Introduction 
 

The nuclear matter has attracted the attention for many years because of its relevance to 
astrophysics and heavy ion collisions. For symmetric nuclear matter, it is a hypothetical 
system of equal number of protons and neutrons ( ),n pρ ρ=  where nρ  represents the neutron 

density and pρ  represents the proton density, but in case of asymmetric nuclear matter 

( ).n pρ ρ≠  To distinguish between symmetric and asymmetric nuclear matter we have to use a 

symmetry parameter α  which equal ( ) /n pρ ρ ρ− , in case of symmetric nuclear matter 0α =  

and 1α =  for pure neutron matter, where ρ  is the total density equals to 
3

2

2
( ) .

3
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n p

k
ρ ρ

π
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Here fk  represents the Fermi momentum. This physical quantity E/A as a function of the 
nucleon density is called the Equation of State (EOS). The EOS is a thermo dynamical 
equation describing a mathematical relationship between state variables of matter in 
equilibrium under a given set of physical conditions. Plotting the E/A with the density gives us 
a curve, which decreases with increasing density to reach the minimum value point called 
saturation point. The exact experimental value of saturation point 3

0 0.16 0.01 fmρ −= ±  at 
/ 16 1E A MeV= − ±  [1].  

By using  the  properties  of  the  nuclear  medium  in  an  extremely wide  range  of  
density, the internal structure of neutron stars can be determined. Some neutron stars rotate 
very rabidly up to 716 times per second or approximately 43000 revolutions per minute [2, 3] 
giving a linear speed at the surface on the order 165c and emit beams of electromagnetic 
radiation as pulsars. 11 1210 10 .K→  Indeed, the discovery of pulsars in 1967 first suggested that 
neutron stars exist. 
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The temperature inside neutron star is 11 1210 10 .K→  The pressure increases from 
33 353 10 1.6 10 Pa× → ×  from the inner crust to the center. The EOS of neutron star still not 

known, it is assumed that it differs from that of white dwarf. Unfortunately, the relation 
between density and mass is not fully known, which means that we have uncertainties in 
radius. 

We used in this work the CD-Bonn potential, but unfortunately, this potential cannot be 
used directly in perturbative calculations and should be normalized firstly. This potential is 
based on meson exchange, all mesons with masses below the nucleon mass like 
( , , (770); (782))π η ρ ω  were included.  

 
One of the most accurate NN interactions is the Argonne 18V  potential [6]. It is 

constructed by a set of two-body operators, which arise naturally in meson exchange 
processes, but the form factors are partly phenomenological (except, of course the one-pion 
exchange). Actually the NN potential are constructed by fitting np data for 0T =  states and 
either np or pp data for 1T =  states. One of the examples for potentials  fit  to np in all states 
are Argon V14 [7], Urbana V14 [8] and most of the Bonn potentials  [9], unfortunately, 
potential models which fit  only the np data often give a poor description of pp data [10], even 
after applying the necessary Coulomb correction. On the other hand potentials fit to pp data in 

1T =  states five only medium description of np data. Fundamentally, this problem is due to 
charge-independence breaking in the strong interaction. Argonne 18V  potential is a high 
quality, non-relativistic, local NN interaction with explicit charge dependence and charge 
dependence and charge asymmetry. 
 
2.  Theoretical approaches  
 

Different approaches have been taken for the investigation of the properties of Nuclear 
matter. Brueckner reaction matrix G  represents the starting point in the BBG theory [4, 5]. 
The BBG theory is based on a linked cluster expansion of the energy per nucleon of nuclear 
matter, which in the case of asymmetric nuclear matter depends on the isospin components of 
the two colliding nucleons. Then the G  matrix can be represented as:  

 
 

1 2

1 2 1 2 1 2

1 2

( )
( , , ) ( , , ),

( ) ( )
NN

NN
k k

K K Q K K K KUG U G
V K K i

ρ β ω ρ β ω
ω η

> <
= +

− − +  
   (1) 

 
where V  is the volume of the system. The single-particle momentum denoted by iK  . NNU  is 
the NN  interaction, and ω  is the starting energy where β  represents the asymmetry 
parameter is defined as  ( ) /n pβ ρ ρ ρ= − . The operator 1 2( , )Q K K  projects on intermediate  

scattering  states in which both nucleons are above the Fermi sea (Pauli operator). Our 
calculations are performed with a variety of nucleon-nucleon potentials, among which is the 

18AV  potential [6] and the BonnB potential [11] for the two-body nuclear force, and their 
corresponding potentials for the three-body force. The single particle energy is defined as:  
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2
2( ) ( )

2 BHFk k U k
m

= +
       (2) 

                   
The Brueckner–Hartree–Fock (BHF) approximation for the s.p. potential ( , ),U k n  using 

the continuous choice [12] is  
 

   1( ) ( ) Re ( ( ) ( ))BHF A
k

U k n k kk G k k kk
V ′

′ ′ ′ ′=  +       (3)  

 
where the subscript “A” indicates antisymmetrization of the matrix element. In this approach 
equations (1)–(3) have to be solved self consistently. In the BHF approximation the energy per 
nucleon as a function of density ρ  and the isospin asymmetry β  is: 
 

[ ]
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   (4) 

 
The only quantity needed to solve the Beta-Goldstone equation is the bare NN  interaction 

.NNU  In fact, we would like  to mention about the historical story about the  choice of the 
forces between the nucleons, since all the results for the nuclear Equation of State (EOS) using 
the realistic two-body force fail to reproduce the correct saturation point extracted from the 
experimental data on a wide set of nuclei. Despite of many different two-body forces have 
been used in order to reproduce the different saturation points, but, unfortunately, all of the 
points are outside the experimental constraints. In the case of Brueckner–Hartree–Fock (BHF)  
approximation with standard  choice of the single particle potential, all the saturation points 
appear to lie along the so called “coester band” [13]. By using the continuous choice, the 
”coester band” reproduces closely results in a more limited region of the energy-density plane. 
However, the empirical region is missed [14]. Moreover, the use of the three-hole line 
contribution according to the Bethe-Brueckner-Goldstone (BBG) expansion does not 
reproduce correctly the saturation points since the contribution appear to be quite small [15, 
16]. 

The variation method has been used [17] to calculate the various properties of hot and 
frozen homogeneous fermionic fluids such as symmetric and asymmetric nuclear matter [18]. 
One of the models of the variational methods in the Lowest Order Constrained Variational 
(LOCV) approximation has been studied and compared with the Brueckner-Hartree-Fock 
(BHF) approach and it is shown under the same conditions and approximations that the two 
approaches are equivalent [19]. Finally, the results show the same conclusion without 
achieving the empirical saturation point.  
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3.   Three body force  
 

The fail of reproducing the empirical saturation points requires the needs of including 
three body force (TBF). However, it seems to be very difficult to reproduce the experimental 
binding energies of light nuclei and correct saturation points using one simple set of the TBF 
[20]. However, many progresses have been made during last decades in the theory of TBF. 
Recently, different models have been used. Two major lines of this approach have been 
pursued in the past, the first one involving a semi phenomenological determination of the TBF 
[22, 23] such as Urbana model. The Urbana model consists of an attractive term 2

ijkV π  due to 
two-pions exchange with excitation of an intermediate ∆-resonance, and a repulsive 
phenomenological central term R

ijkV   

                                  2 ,R
ijk ijk ijkV V Vπ= +      (5)  

 
which is the attractive  part contribution with a cyclic sum over the  nucleon indices , ,i j k  of 
products of anticommutator {,} and commutator [,] terms 
 

{ }{ }2 1, , , , , , ,
4ijk ij jk i j j k ij jk i j j k

cyc
V A X X X Xπ τ τ τ τ τ τ τ τ    = ⋅ + ⋅     

     (6) 

 
where  

( ) ( )ij ij i j ij ijX Y r T r Sσ σ= ⋅ +     (7)     
 
is the one-pion exchange operator,   and  are  the  Pauli  spin  and  isospin  operators, 

and ( )( )3ij i ij j ij i jS r rσ σ σ σ = −   is the tensor operator. Y (r) and T (r) are the Yukawa 

and tensor functions, respectively, associated to the one–pion exchange, as in the two–body 
potential.  

The repulsive part represented as:  
 

                                              2 2( ) ( ),R
ijk ij jk

cyc
V U T r T r=      (8) 

 
where the constants A and U in the BHF can be adjusted to reproduce the observed nuclear 
properties. For example in Ref. 24 found 0.0333A = −  and 0.0038U = by fitting  properties of 
light  nuclei 3 4( , ),H He  while in the Urbana TBF  using  the variational approach, the two 
parameters A and U can be adjusted to reproduce the observed 3 4( , )H He binding energy only, 
but unfortunately these two parameters fail to reproduce the correct saturation point of 
symmetric nuclear matter [20, 21]. It is worth to be mentioned that the TBF parameters values 
are quite different in both BHF calculations and variational approach, and it is found that the 
repulsive term in the BHF approach is much weaker [25]. 
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It contains the contribution due to the medium modification of the two-meson 

( , , )ππ πρ ρρ  exchange part of the nucleon-nucleon ( )NN  interaction, the ρπγ  diagram and 
the contribution associated to the ϕ  and ω  meson exchange.  The effect of the TBF has been 
included in the calculations along the same line as in Ref.  32, where it is reduced to an 
effective two-body interaction in order to avoid the difficulty of the full three-body problem. 
We can write down the equivalent two-body potential, which is given in r-space by 

 

[ ][ ]

[ ][ ]

1 2 3 1 2 3 3 3 13 23

3 1 2 3 1 2 3 3 13 23

1 ( ) 1 ( ) 1 ( )
4

( ) ( ) 1 ( ) 1 ( ) .

n
n

n

r r V r r Tr dr dr r r r

W r r r r r r r r r

φ η η

φ η η

∗′ ′ ′ ′  = − − ×

′ ′ ′× − −


       

    
   (9) 

 
The function ( )rη  defined  as the average over spin and momenta in the Fermi sea of the 

defect function, where only the most essential partial  wave components have been included, 
i.e., the 1

0S  and 3
1S   partial waves. The trace is taken with respect to the spin and isospin of the 

nucleon. In the present work, one may introduce a Skyrme effective interaction density 
dependent term in addition to the BHF calculation made in Ref. 32 to obtain a correction for 
the three-body forces. 

 
4

1 2 1 21
( , ) (1 ) ( )i

i ii
V r r t x r rα

σρ ρ δ
=

= + −    (10)  
 
This  is  a  two-body  density  dependent  potential  which  is  equivalent  to  three-body 

interaction.  Where it  and ix  are  interaction  parameters  given  in  Table  I  as  a  result  of a 
least square fit to the exact calculation with three body forces given in Ref. 34, iP  is the  spin  
exchange  operator, ρ  is  the  density, 1r  and 2r  are  the  position  vectors  of  the particle (1) 
and particle (2) respectively. (1/ 3;2 / 3;1/ 2;1)iα = . This potential has been used previously by 
one of the authors Mansour H. [35-39].  
 
4.    Results and discussion 
 

Now the study of the TBF became necessary in order to modify the failure of two-body 
forces to achieve the empirical saturation properties of the nuclear matter. Here in this work, 
we mention only that the calculation of Ref. 32 was performed in the framework a 
nonrelativistic BHF approach based on the two-body interaction, where the results do not 
reproduce the empirical point. Then the enhancement came after the addition of TBF’s. 
Therefore, by calculating the correction parameters in the two-body force results in order to 
achieve the TBF results of Ref. 32 over the whole range of density. These are shown in Table I 
using a least square fit. The second motivation behind this work is comparing our results for the 
TBF correction obtained for the symmetric nuclear matter and the pure neutron matter by that 
found in Ref. 32, using the same BHF approach with the same potentials 18AV [6] and the 
BonnB [11].  
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In Fig. 1 we show the energy per particle calculated within the scheme BHF vs. the density 
for the symmetric nuclear matter, (lower curves) for the two-body forces with 18AV and 
BonnB potentials and (upper curves) for the TBF adopted from Ref. 32. We notice that the 
BHF approach for the two-body forces fail to reproduce the empirical saturation point of the 
symmetric nuclear matter 3

0( 0.265 )fmρ −=  for the Argonne 18V  potential and 
3

0( 0.33 )fmρ −=  for the BonnB potential. As we can see, the TBF contribution to the EOS of 
the nuclear matter is repulsive within the BHF framework. The introduction of the TBF shifts 
and improves the saturation properties of the nuclear matter 

3
0 0( 0.2 , / 15.27 )fm E A MeVρ −= = − for the Argonne 18V  potential and 

3
0 0( 0.17 , / 17 )fm E A MeVρ −= = − for the BonnB potential) towards to the empirical saturation 

point. This indeed makes the inclusion of TBF to the EOS calculation very important. 
Therefore, it was necessary to calculate the correction parameters to be added to the two-body 
forces. We can see in Fig. 1 when we add the correction part to the two-body forces, then we 
reproduce the TBF curves in perfect way as shown  in the figure . 

 
Fig. 1.   The binding energy per nucleon E/A is plotted vs the density for the symmetric nuclear matter, (lower 

curves) for two-body forces and (upper curves) for the TBF. Using the nonrelativistic BHF calculation with AV18 
and BonnB potentials. The last upper two curves show the added corrections to the two-body forces. 

 
Fig. 2.  The same as Fig. 1, but for the neuron matter.  
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The same trend is shown for the pure neutron matter EOS, presented in Fig. 2. It can be 
concluded that the adopted correction to the two-body forces, both for the symmetric matter 
and for the pure neutron matter, shows a perfect fitting to the TBF, with different potentials. 
The study of the symmetry energy ( )symE  and its dependence of the density is an interesting 
topic and play an important role in nuclear physics and astrophysics. It is defined from the 
energy per particle of asymmetric nuclear matter ( n pρ ρ=  being nρ  and pρ  are the neutron 
and proton densities respectively) as 

 
2

2

0

1( ) ,
2sym

E
AE n

β

β
=

∂

=
∂   (11) 

 
where  β  is  the  asymmetry  parameter.  In  this  work  we  adopted  the  figure  of  the 
symmetry  energy  as  a  function  of  density  from  Ref.  34  trying  to  apply  the  correction 
for the  tow-body  forces  as  shown  in  Fig.  3,  the  figure  shows  the  symmetry  energy  in 
MeV vs. density in 3fm−   using the BHF for both tow-body forces and the inclusion of  TBF 
illustrating the exact fitting of the correction for both adopted potentials Argone 18V  and 
BoonB.  At 0ρ  the symmetry energy is 32MeV .  

 
Fig. 3.    The symmetry energy (Esym ) in  MeV for  the EOS using the BHF with  and without TBF is plotted vs 

the density in f m-3 with AV18  and BonnB potentials. The fitting of the correction for the two-body force is 
shown.  

 
The pressure for the nuclear matter can be given from the energy per particle of the 

symmetric matter as  
 

                                           2 /( )
A

dE AP
d

ρ ρ
ρ

=      (12) 
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We show in Fig. 4 the pressure in 3( . )MeV fm−  as a function of the density in 3fm− or the 
symmetric nuclear matter. In the same way, we used the 18AV  and BonnB potentials, and 
TBF. As we can see clearly, the fitting of the corrections for the tow- body forces along the 
whole range of the density is very well. Since the figure shows that for the symmetric nuclear 
matter which is considered bound system, the pressure is negative at densities below the 
saturation density, gradually the pressure start to increase as the increasing of the density up to 
zero value at the saturation density ( 0)P = .  

 
Fig. 4.   The pressure in (MeV. fm-3) for symmetric nuclear matter vs the density in fm-3 with AV18 and BonnB 

potentials.  
 

This explains that the nuclear matter at the saturation density can be in a mechanical 
equilibrium with external pressure. The nuclear incompressibility K  is an important ingredient 
in the nuclear equation of state. Its value very important into the analysis of astrophysical 
phenomena such as supernova explosions and heavy ion collisions. It can be used to understand 
the stiffness of the EOS. Which defined as a slope of the pressure at the saturation density, and 
it can be calculated from this equation:  
 
 

                          
0 0

2
2

2
( ) ( / )( )9 9 .P E AK

ρ ρ ρ ρ

ρ ρρ
ρ ρ= =

∂ ∂= =
∂ ∂

    (13) 

 
We have calculated the incompressibility at the saturation densities for two different 

potentials, and it is found 246.97  for 18AV  and 216.7  for BonnB potentials. Despite of the 
experimental value of the incompressibility for the symmetric nuclear matter have been 
determined to be 240 20MeV±  [39]. 
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We show in Fig. 5 the incompressibility K  as a function of the density using 18AV  and 
BonnB potentials with and without the inclusion of the TBF. This figure shows the 
compatibility between the TBF use and use of the corrections, and reflects the importance of 
the use of the correction for various densities.  

 
 

Table I. The correction parameters for the two-body forces, using  AV18 and BonnB potentials.  
 

Potential T1 T2 T3 T4 X1 X2 X3 X4 

Argonne V18 11035 31050 -35125 -6699 -12116 -34450 38839 7369 

BonnB 18197 52141 -58643 -11019 -22080 -62480 70560 13500 

 
 
 

 
Fig. 5.   The incompressibility K as a function of the density using AV18 and BonnB potentials with and without 

TBF. 
 
 
5.   Conclusions 
 
Thus, in the present paper we studied the EOS in the framework of the BHF approach 
following Ref. 32, starting from the symmetric nuclear matter and the pure neutron matter, 
using the two-body forces and the inclusion of the suggested TBF. We illustrate the correction 
for the two-body forces, which fit in perfect way the TBF results of Ref. 32. In addition to 
confirm we have shown figures for the pressure and incompressibility calculated for the same 
potentials 18AV  and BonnB used on a wide range of density  and  we got the expected results 
with  the  use of the  correction.  
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