УДК 581.13:581.54

ВЛИЯНИЕ ИНТЕНСИВНОСТИ ОСВЕЩЕНИЯ И ТЕМПЕРАТУРЫ НА ПРИРОСТ СУХОГО ВЕЩЕСТВА У ANTHURIUM SCHERZERIANUM SCHOTT, И.А. ANDREANUM LIND.

В О БАХІШИЯН

Научалась питенсивность наковычин сухі синести у Anthurium scherzerianum и А. andreanum в различных условаях освещенности и температуры. Максимальный прирост сухого вещества у А. scherzerianum выявлен при освещенности 9—10 тыс вк и температуре 22—24°, у А. andreanum — 15—16 тыс. лк и 22—24°.

Ключеные слови: антурнумы, сухое вещество, освещенность, температуга.

Неотронический род Anthurlum Schott., насчитывающей более 500 видов [9, 10], богат высокодекоративными элементами. К нему относятся как цветочно-, так и лиственно-декоративные растения. Первую группу составляют А. scherzerlanum и А. andreanum, которые являются самыми распространенными видами данного рода в культуре.

Для каждого из внешних факторов, необходимых для роста и развития, существует предельная напряженность, за которой начипается его тормозящее действие, вызывающее замедление ответной реакции растения.

В случае песоответствия генетически закрепленных особенностей вида к световым условиям произрастания фотосинтез может протекать при интенсивности света выше насыщенного (для теневыносливых растении) или соответствующей прямолинейному отрезку световой кривой (для светолюбивых растений). В обсих случаях его КПД будет виже максимально возможного в оптимальных условиях [7].

Любименко [3], изучая накопление сухого неществя у ряда древесных и транянистых растений, доказал, что теневыносливые виды максимальное количество сухого вещества накапливают при сравнительно низкой напряженности света по сравнению со светолюбивыми и что как для первых, так и для вторых существует предельная освещенность. Опыты Протасовой и Кефоли [4] на салате и редисе показали, что при увеличении интенсивности света содержание хлорофияла вначале увеличении интенсивности света содержание хлорофияла вначале увеличивается, а на пределами оптимума— уменьшается.

Имеющиеся в литературе сведения относительно светового режима антурнумов [2, 5, 8, 11] главным образом основаны на визуальных наблюдениях и затрагивают вопросы, связанные с длительностью дня, а также минимальной и максимальной освещенностью, за пределами которой растения повреждаются (слабеют или получают ожоги).

Изучению влияния температурного фактора на регуляцию роста и развития антурнумов посвящено довольно много работ [6, 12, 13]. Что касается вопроса о совместном влиянии светового и температурного факторов, то он мало исследован. Задача нашего исследования состояла в определении оптимальной напряженности света для культур

A. scherzerianum, A. andreanum в зависимости от температурного режима.

Исследования велись на 3—4-летних и приблизительно равногобитуальных расзениях. Интенсивность света регулировалась с помощью притенения, а температурный режим——лектрообогревателями с терморегулитором. Во всех вариантих относительния влажность воздуха колебалась в пределах 75—82%

Растения А. Scherzerlanum солержались в условиях освещенности, составляющей 15; 7.5: 9.5: 15—16, а А. ав dreanum —10.5: 15.5 и 19.5 тыс. лк (\pm 0.5 тыс. лк), при трех градациях температуры—19: 23: 27° (\pm 1°)—в зависимости от варианта. Напряженно выстета определялась люксметром Ю—16, интенсивность фотосинтеза—методом изменения сухой массы (по Саксу—[1], при четырехчасовой эксполиции (9—13 ч), и первой половине апреля.

Данные об интенсивности фотосинтезя подвергались математической обработне

Давиазон изменчивости световых и температурных условий оргижерей кож мерийонов е реако континентальным климитом гораздо шире а а пашнонной способности витурнумов и, естественно, пластичности их фотосинтетического анилрата. Следоватильно, прирост сухого веществи у них будет больше у тех растений, которые содержатся в оптимальных условиях ассимиляции СО₂.

В условиях Еревана число ясных и малооблачных дией в году зкачительно больше обязаных, и в оранжереях интенсивность освещения часто превосходил необходимую для антурнумов норму, передко достигая 40 тыс лк и выше, при которой растения подучают массовые ожоги.

В исследуемый период годичивя температурная амплитуда в коллекционной оранжерее составляла 30—32° (максимальная 37°, минимальная—5°). Перед отоштельным сезоном и сразу после его завершения суточная температурная амплитуда была разна 19—21°.

Наши исследования показали, что растения A. scherzerianum проивляют определенную реакцию на изменение температуры и освещенно-

Таблица I Прирост сухой массы в различных условиях освещенности и температуры, мг/лы² час

Action of both at 1970s.								
Вил расте-	устовия <u>освещен</u> <u>устовия</u>	опыта темпера- тура, С	Прибавка сухон массы	Вил расте-	Услович освещен- пость, тис. лх	опыта темпера- тура, С	Прибавка сухой массы	
A sc et et a m	4.5	19 23 27 19 23 27	18.4±0.23 20.9±0.32 19.4±0.18 \$2.8±0.30 24.7±0.37 23.7±0.29	A. schefzellium	9.5 15.5	19 23 27 19 23 27	29.4+0.22 29.7+0.33 28.7+0.41 11.2+0.16 11.6+0.47 3.4+0.15	
A. and eanum	10.5	19 23 27	25,3±0,15 29,1±0,59 22,8±0,16	А. оли елении	15,5 19.5	19 23 27 19 23 27	32.6+0.47 34.7+0.30 33.0+0.46 25.4+0.038 25.8+0.38 24.4+0.24	

сти. Оптимальной температурой, при которой наблюдается наибольшее повышение интенсивности фотосинтеза, является 22—24° (табл. 1).

Являясь растениями, произрастающими в природе под пологом тропического леса, антурнумы очень чувствительны к изменению световых условий. Интенеивность фотосинтеза при постепенном увеличении освещенности у них возрастает, достигая максимума при 9—10 тыс. лк, после чего сильно падает, что наглядно видно при освещенности 15—16 тыс. лк. Более того, одновременное повышение температуры и освещенности приводит к сильной депресени фотосинтетической активиости листьев, которая по сравненно с аналогичным показателем при осве-

Таблица 2 Количество повообразований (листьев и сонветий) у А. scherzerianum и А. андлеанит и разные времена года, в % от общего числа в году

Вид энгурнумов	февраль февраль	Март— Март—	Май- септябрь	Октябрь декабрь
A. scherzerianum	1.3	49,0	11,8	34.1
A. andreanum	1.9	42.1	17.3	38.7

щенности 9—10 гыс, як и температуре 22—21° синжается в 8,44 раза. Следует отметить, что подавление процесса фотосинтеза при повышения температуры более резко проявляется лишь при чрезмерном увеличении напряженности света.

Сказанное позволяет заключить, что оптимальными фототермическими условиями для пормального протекания фотосинтеза у этих растений является освещенность 9—10 тыс, лк и температура 22—24°.

Температура 26—28° при любой освещенности не является оптямальной, несмотря на то что растения теплолюбивые.

Растеняя A. andreanum в природе растут на сравнительно открытых участках, в условиях более высокой освещенности. Следует полагать, что и фотосимтетический аппарат их приспособлен к воздействию спета более высокой интенсивности. Однако и в этом случае имеются свои оптимальные пределы. Согласно результатам исследований, оптимальной папряженностью света для этих растений является 15-16 тыс. лк. Дальнейшее повышение (18-19 тыс. лк) освещенности отринательно действует на этот показатель ири всех градациях температуры. В отношении последней констатирована выраженияя закономерпость: понышение температуры до 22 21 в любых условиях освещенпости сопровождается возрастанием интенсивности фотосинтеза, дальнейшее повышение ее приводит к снижению этого показателя. Примечательно, что чем инже освещенность, тем больше диапазон варьироваиня интенсивности фотосинтеза при изменении температурного фактора. Так, в условиях 10-11 тыс. як повышение температуры с 19-20° до 22—24° активизировало фотосинтез на 15,5%, дальнейшее повышение до 27—28° по сравнению с предыдущим показателем синзило его на 21,6%. При 15-16 и 18-19 тыс. лк этот показатель соответственно составлял 6,4 и 4,9; 1,5 и 4,4%.

Таким образом, изучаемые виды антуриумов отличаются реакцией на интенсивность систа, что обусловлено эволюционно сложившимися условиями их произрастания. А, scherzrelanum как теневыносливый вил приспособлен к менее низкой освещенности, а А, andreanum как сравинтельно светолюбивый—к высокой интенсивности света. У этих видов 146

нитенсивность фотосинтеза как один из показателей физиологической адаптации максимально проявляется при освещенности 9—10 в 15—16 тыс. лк соответственно. При этом температурный оптимум в обоих случаях лежит в пределах 22—24°. Учитывая факторы среды, а также применяя соответствующие агромерояриятия, можно целенаправленно изменать сезонный ритм развития антурцумов в том или ином районе интродукции.

Нами выявлены также периоды наибольшей продуктивности растений. Из таблицы 2 видно, что 80,8% (А. scherzeливции) — 83,1% (А. andreanum) дистьев и соцветий у них образовались с марта по апрель и с октября по декабрь. Именно в эти периоды растения должны содержаться в оптимальных условиях ассимиляции СО₂.

Институт ботаники АН Арминской ССР

Поступило 22.Х 1981 г.

ԼՈՒՍԱՎՈՐՎԱԾՈՒՐՅԱՆ ԻՆՏԵՆՍԻՎՈՒՐՅԱՆ ԵՎ ԶԵՐՄԱՍՏԻՃԱՆԻ ԱԶԳԵՑՈՒԹՅՈՒՆԸ ՉՈՐ ՆՅՈՒԹԵՐԻ ԿՈՒՏԱԿՄԱՆ ՎՐԱ ANTHURIUM SCHERZERIANUM SCHOTT, & A. ANDREANUM LIND-ը ՄՈՏ

A. C. PRINGESUA

Ուսումիասիրվել է լուսավորվածության և չերմաստիձանի տարբեր պայքաններում A, scherzerianum-ի և A, endreanum-ի մոտչոր նյացների կուտակման ինտենսիվունյունը։

Պարզվել է, որ չոր հյուների կուտակման ինտենակվունյունը A, scherzetlanum-ի մոտ մաքսիմալ կերպով դրսհորվել է 9—10 հաղ, լբո լուսավորվածության և 22—24 ջերմաստիճանի պայմաններում, A, andreanum-ի մոտ՝ համապատասիանաբար 15—16 հաղ, լթո և 22—24 ։

INFLUENCE OF THE INTENSITY OF HAUMINATION AND TEMPERATURE ON THE GROWTH OF DRY SUBSTANCE OF ANIHURIUM SCHERZERIANUM SCHOTT, and A. ANDREANUM LIND.

B. O. BAKHSHIYAN

It has been found out that the intensity of the accumulation of dry substances in A, scherzerianum is manifested at most under conditions of illumination of 9-10 thousand lux and temperature of $22-21^\circ$, in A, and reanum 15-16 thousand lux and 22-24.

JIHTEPATYPA

- 1 Белик В. Ф. Физнологические исследования в овощеводстве и бличеводстве 146—147, М., 1970.
- Гоголившина М. А. Сб.: Пепользование троинческих и субтропических растений в озеленении интерьеров. 19—20, Тарту, 1983
- 3. Любименко В. Н. Избр. труды, 1, 33-99, Киев. 1963.

- 4. Прогасова Н. И., Кефоли В. И. В кп.: Физнолагия фатосинтезв. 251—270, М., 1982.
- Рихтер М. А. Шветоводство, 1, 35, 1984.
- 6. Сааков С. Г. Оранжерейные и комнатные растения, 139—141, Л., 1983.
- 7. Цельнивер Ю. Л., Осипова О. П., Николаева М. К. В. ки.: Физиология фотосите теза, 187—202, М., 1982.
- 8. Широев Э. А., Бахшия (Б. О. Сб.: Использование троинческих и субтропических растений в озеленении интерьерой 98—99, Тарту, 1983.
- 9. Builey L. II. The standart cyclopedie of horticulture, 1, 301-302, New York, 1947.
- 10. Engler A., Gild E. Sillabus der Planzeitem ifen, 146, Berlin, 1924.
- 12. Gajek W., Schwarz K. Gestenbau, 27, 11 5343, 1980.
- 12. Hahn E. Gartenwelt, 7t., 5, 100, 1976.
- 13. Helmann M. Cartenwelt, 75, 51, 451-453, 1975.

«Биолог. ж. Армении», т. ХХХ\ЧИ. № 2, 1985

УДК 615:612.32

ПОТОТИВНЕНИЕ ИОНАМИ ЛИТИЯ СЕКРЕЦИИ СОЛЯНОЯ КИСЛОНА НА МОТОИВИТОТ В ОТОИТИВНЕНИЕ В ОТОИТИВНЕНИЕ

В Г. НВАШКИН, В. М. АРУТЮНЯН, В. Е. ТОКАРЕВ, Г. А МИНАСЯН, Г. А ЕГАНЯН

Изучались механизмы угнетающего влияния понов лития на секрецию ИСі на мадели изолированной слизистой оболочки желудка лягушки. Показано, что торможеша секреции ИСІ литием обусловлено, по крайней мере, тремя факторами: угнетенней активности аденилатциклазы; торможением трансмембранного переноса Кт. блокированием направленного в клетку кальциелого тока.

Ключевые слови, сливистия оболочки эсслубка, личий, кислога соляная.

Результаты исследований последних лет свидетельствуют о том, что лизий оказывает инрокое и разностороннее воздействие на организм и в перспективе может стать ценным средством при лечении чногих заполеваний. Установлено, что литий влияет на синтез клеточных белков [10] и нейромеднаторов [7], активность циклазных систем [15]; транемембранный транспорт К*. Са _ Mg [5, 11, 16]; клеточную продукцию энергии [13]. Цель настоящей работы состояла в изучения характера и путей влияния лития на кислотопродуцирующую активпость слизистой оболочки желудка (СОЖ).

Мотериал и методика. Опыты проведены на лигушках вида Rana esculenta, у которых выделяли желудох и отельнавли СОЖ с частью поделизистого слов. Полученный препарат изолированной СОЖ фиксировали на пластине, имеющей отверстие площалью 2.2 см- и разделяющей ее на две камеры—секреторную и интательную [1]. Секреторная камера, в которую ориентирована секреторная поверхность СОЖ, содержала 1 ил 120 мМ раствора NaCl. В нее погружали мектроды рН-метра и выхол титрующего устройствя Патательная чамера содержала 5 мл следующего состава (мМ): NaCl—87, КСl—3, MgSO₄—0.8, CaCl₂—1,8, NaHPO₄—1, NaHCO₄—18, глюко-за—5 ((рН—7,2) [1,3]. В течение всего опыта через питающий раствор пропускали