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Abstract. We present a complete set of positive and negative energy fermionic modes in a D + 1-
dimensional locally anti-de Sitter (AdS) spacetime with a part of spatial dimensions compactified on a 
torus. Two geometries are considered: the boundary-free geometry and the geometry with an additional 
brane parallel to the AdS horizon. On the brane, the field operator obeys the bag boundary condition. Both 
regions between the brane and the horizon and between the brane and AdS boundary are considered. 
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1. Introduction 

The anti-de Sitter (AdS) spacetime for the corresponding geometry and coordinate systems [1] 
is the maximally symmetric solution of the Einstein equations with a negative cosmological constant 
as the only source of the gravitational field. Its popularity as a curved background in quantum field 
theory is motivated by several reasons. First, due to the high symmetry, numerous problems become 
exactly solvable on the AdS bulk. This allows to shed light on the influence of the gravitational field 
on quantum matter in more complicated geometries. The AdS spacetime generically arises as a 
ground state in extended supergravity and string theories, which is again potentially most important. 
Recent increase of interest to the AdS geometry is related to its crucial role in two exciting 
developments of the past decade such as the AdS/CFT correspondence [2, 3] and the brane world 
scenario with large extra dimensions [4]. 

Motivated by the problem of radion stabilization, the quantum effects in brane world scenarios 
with AdS bulk have been investigated in a large number of papers (see, for instance, references given 
in [5]). In the present paper, we consider the fermionic modes in locally AdS spacetime with a 
compact subspace (for quantum effects in brane world models with compact subspaces in the case of 
a scalar field see [6-13]). Two different problems will be considered in the absence and in the presence 
of a brane parallel to the AdS boundary. The complete set of fermionic modes is required in the 
canonical quantization procedure of the Dirac field on the background under consideration (for the 
quantization on general curved backgrounds see, for example, [14-16]). Having these modes, one can 
evaluate the vacuum expectation values (VEVs) of physical observables quadratic in the field 
operator. Note that the VEV of the current density for a charged scalar field in locally AdS spacetime 
with toroidally compactified spatial dimensions has been investigated in [17] for the boundary-free 
geometry, and in [18, 19] for geometries with a single and two parallel branes. The fermionic current 
in the boundary-free geometry has been recently discussed in [20].  
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The paper is organized as follows. In the next section, we present the geometry of the problem, 
the field equation and the periodicity conditions. In section 3, a complete set of solutions to the Dirac 
equation is given for the problem at the absence of the brane. The fermionic modes in the presence 
of a brane parallel to the AdS boundary are presented in section 4. Both regions between the AdS 
boundary and the brane and AdS horizon and the brane are considered. The main results are 
summarized in section 5. 

 

2. Geometry of the problem 
 

We consider a ( 1)D + -dimensional locally AdS spacetime described in Poincaré coordinates. 
The latter are the most frequently used coordinates in braneworld scenarios and in the discussion of 
AdS/CFT correspondence. The metric tensor is given by the line element 

2
2 2( ),i k

ik
ads dx dx dz
z

η = − 
       (1) 

where a  is the curvature radius of the spacetime, 0 ; , 0, ..., 1,z i k D≤ < ∞ = −  and 
(1, 1,..., 1)ik diagη = − − . In this form, the part of the AdS spactime covered by the Poincaré coordinates 

is conformally related to the Minkowski spacetime. The hypersurfaces 0z =  and z = ∞   present the 
AdS boundary and the horizon, respectively. Even though the local geometry that we are going to 
consider here is an AdS spacetime, the global properties will be different. Namely, we assume that a 
part of the spatial dimensions, the coordinates 1 1( , ..., ),p Dx x+ −  is compactified to a q  -dimensional 
torus 1( ) ; 1qS q D p= − − . Denoting the corresponding coordinate lengths by ,lL one has 

0 ; 1, ..., 1l
lx L l p D≤ ≤ = + − . Here, p is the number of uncompact dimensions and for them one has 

; 1,...,lx l p−∞ < < +∞ = . Hence, the Minkowski spacetime, to which the geometry we consider is 
conformally related, has a spatial topology 1( )p qR S× . 

We want to find a complete set of modes for a fermionic field ( )xψ  obeying the Dirac equation 

0,i mμ
μγ ψ ψ∇ − =       (2) 

where μ μ μ∇ = ∂ + Γ  is the covariant derivative and μΓ  is the spin connection. For the geometry at 

hand, the curved spacetime Dirac matrices μγ  can be taken as ( )a
z

μ μγ γ=  where ( )μγ  are the 

corresponding flat spacetime matrices. For a fermionic field realizing the irreducible representation 
of the Clifford algebra, the latter are N N×  matrices, where ( )1 / 22 DN  +  =  with [ ]x  being the integer 

part of x . A possible representation of the flat spacetime gamma matrices that allows the separation 
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of the equations for the upper and lower components of the spinor ( ),xψ  has been discussed in [5]. 
Here we consider an alternative representation with a simpler structure for the fermionic mode 
functions.  

The background geometry has a nontrivial topology and, in addition to the field equation, the 
periodicity conditions must be specified in the compact subspace. We will consider quasi-periodicity 
conditions 

1 1( , , ..., , ..., ) ( , , ..., , ..., ),lil l
lt x x L z e t x x zαψ ψ+ =    (3) 

with constant phases lα . The special cases most frequently discussed in the literature correspond to 
untwisted ( 0)lα =  and twisted ( )lα π=  fields. 

For the flat spacetime gamma matrices we take the representation 

0(0)
†
0

0
,

0
σ

γ
σ
 

=  
   

( )
†

0
,

0
ll

l

σ
γ

σ
 

=  −   

(0) 1 0
,

0 1
iγ  

=  −    (4) 

where 1, 2,..., 1,l D= −  and the dagger represents the hermitian conjugate. From the anticommutation 
relations  {γஜ,  γ஝}   =  2gஜ஝, for the matrices 0 1;σ σ    we find the relations 

† † † †2 ; 2 ,l n n l nl l n n l nlσ σ σ σ δ σ σ σ σ δ+ = + =     (5) 

and 

† † † † †
0 1 1 0 0 1 1 0 0 0; ; 1,σ σ σ σ σ σ σ σ σ σ= = =      (6)   

for , 1, 2,..., 1.l n D= −  The term in the Dirac equation (2) related to the spin connection is presented 

as ( ) (2 )DD aμ
μγ γΓ = − .  

 
3. Fermionic Modes  
 

By taking into account the planar symmetry along the directions parallel to the AdS boundary, 
the positive energy mode functions can be taken in the form  

( ) ( ) ( ) ,ikx iEtx z eβψ ϕ+ −=      (7) 

where 1

1
,D l

ll
kx k x−

−
=   ( )zϕ  is a N- component spinor and the collective index β   stands for a set 

of quantum numbers specifying the solution (see below). We will split the momentum k   into two 



Fermionic modes in locally anti-de Sitter spacetime|| Armenian Journal of Physics, 2017, vol. 10, issue 4  
 

157 
 

parts, ( , ),p qk k k=  where 1( , ..., )p pk k k=  and 1 1( ,..., )q p Dk k k+ −=  are the momenta in the 

uncompact and compact subspaces, respectively. For the components along uncompact dimensions 
one has 1 ; 1,..., .k l p−∞ < < +∞ =  The components along the compact dimensions are quantized by 
the periodicity conditions (3): 

2 ; 1,..., 1,l l
l

l

nk l p D
L

π α+= = + −      (8) 

where 0, 1, 2, ...ln = ± ±   

Decomposing the spinor ( )zϕ  into the upper and lower components, ( , ) ,Tϕ ϕ ϕ+ −=  from the 
equation (2) we get 

( ) ( )0 00; 0,
2 2z z
D ma D maE E
z z z z

ϕ σ σ ϕ ϕ σ σ ϕ+ − − +
   ∂ − + − − = ∂ − + + + =   
   

k k  (9) 

where 1

1
.D l

ll
k kσ σ−

=
=   By using the relation 

( )( )† † 2
0 0 ,E k E kσ σ σ σ λ+ − =

    (10) 

with 2 2 ,E kλ = −  we obtain separate equations for the upper and lower components 

( ) ( )2 2
2 2

2

1 2 1
0.

4z z

D maD
z z

λ ϕ±

 + − ±
∂ − ∂ + + = 
      (11) 

The solutions of these equations corresponding to the modes regular on the AdS boundary are 
presented as 

( 1) 2 ( )
1/ 2 ( ) ,D

maz J z σϕ λ χ
±

+
± ±=      (12) 

where ( )vJ x  is the Bessel function and ( )σχ
±

 are coordinate independent one column matrices with 

/ 2N  rows. One has / 2N  linearly independent matrices numbered by 1, 2,..., / 2.Nσ =  

The relation between ( )σχ
+

 and ( )σχ−  is found from (9): 

† †
( ) ( )0 .Eσ σσ σχ χ

λ− +
+= k       (13) 
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Hence, the fermionic modes are specified by a set of quantum numbers ( , , )kβ λ σ=  and the 
corresponding positive energy mode functions are given by 

( )
1/2( 1)

( ) 2 † †
( )0

1/2

( )
( ) .( ) ( )

maD
i x iEt

ma

J z
x z e E J z

σ

β σ

λ χ
ψ σ σ λ χ

λ

+

+

++
+ −

−

 
 = + 
 
 

k
k

    (14) 

The normalization condition for these functions has the form 

( )† ( ) ( ).
q q

D
D

k k p p
ad x k k
z β β σσψ ψ δ δ δ λ λ δ

′

+ +
′ ′ ′

  ′= − − 
 

   (15) 

By using the result 

0

1( ) ( ) ( ),v vdzzJ z J zλ λ δ λ λ
λ

∞

′ ′= −
    (16) 

for the modes (14) from (15) one finds 

( )2( )† † 2 ( ) 2 2
0 0 ,E k Cσ σ

σσχ σσ λ χ λ δ′
′+ +

 + + =  
    (17) 

where 

2
0 ,

(2 ) p D
q

C
V a

λ
π

=
     (18) 

and 1 1q p DV L L+ −= ⋅ ⋅ ⋅  is the volume of the compact subspace. 

Let us introduce the one column matrices ( ) , 1, 2,..., / 2,w Nσ σ =  in accordance with 

†
( ) ( )0

0

,E iw
C

σ σσσ λ χ
λ +

+ −= k

     (19) 

or inverting 

†
( ) ( )0

0 .
2

E iiC w
E

σ σσσ λχ+
+ −= k

    (20) 

In terms of ( )w σ , the normalization condition (17) is written as ( )† ( ) .w wσ σ
σσδ′

′=  From here it follows 

that as ( )w σ  we can take one-column matrices having / 2N  rows with the elements ( )
1 1 .w σ

σδ=  
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Hence, for the normalized positive-energy fermionic modes, up to a constant phase, one gets 

† ( )( 1)
( ) 0 1/20 2

† † ( )
0 0 1/2

( ) ( )
( ) .

2 ( ) ( )

D
i x iEt ma

ma

E i w J zCx z e
E i E i w J z

σ

β σ

σσ λ λψ
σ σσ λ λ

+
+ − +

−

 − −
=  − + + 

k k
k   (21) 

In a similar way, for the negative-energy modes one gets 

† ( )( 1)
( ) 0 0 1/20 2

† ( )
0 1/2

( ) ( )
( ) .

2 ( ) ( )

D
i x iEt ma

ma

i E i w J zCx z e
E E i w J z

σ

β σ

σ σ σ λ λψ
σ σ λ λ

+
− + +

−

 − + −
=  − + 

k k
k   (22) 

It can be checked that the modes (21) and (22) are orthogonal. 
 
 
4. Fermionic modes in the presence of a brane 
 

In this section we consider the background geometry described in section 2 with an additional 
brane parallel to the AdS boundary and located at 0z z= . On the brane, the field operator obeys the 
bag boundary condition 

(1 ) 0,i nμ
μγ ψ+ =      (23) 

                   

where nμ  is the normal to the brane. One has /Dn a zμ μδ=  for the region 0z z≤  and /Dn a zμ μδ= −  

for the region 0z z≥ . With the boundary condition (23), the fermionic current density through the 
brane vanishes.  

First we consider the region 0z z≤ . Similar to the problem discussed in the previous sections, 
the positive energy modes have the form 

† ( )( 1)
( ) 0 1/21 2

† † ( )
0 0 1/2

( ) ( )
( ) .

2 ( ) ( )

D
i x iEt ma

ma

E i w J zCx z e
E i E i w J z

σ

β σ

σσ λ λψ
σ σσ λ λ

+
+ − +

−

 − −
=  − + + 

k k
k   (24) 

From the boundary condition (23) follows that the eigenvalues of the quantum number λ  are zeros 
of the function 1/2 0( )maJ zλ− : 

1/2 0( ) 0.maJ zλ− =      (25) 

Denoting the zeros of the function 1/2 ( )maJ x−   by , 1, 2, ...n nλ =  for the eigenvalues of λ  one finds 

0n zλ λ= . Hence, in the region between the brane and AdS boundary we have a discrete set of 
eigenvalues for λ . 
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The normalization condition for the mode functions (24) is similar to (15), with the difference 
that now the integration over z  goes in the region [ ]00, z and instead of the delta function ( )δ λ λ′−  

one has 
n nλ λδ

′
. From that condition, up to a phase, we find 

2 2 2
1 0 1/ 2

1 (2 ) ( ).
2

p D
q ma nC V a z Jπ λ−

+=
    (26) 

The negative energy modes are found by a similar scheme and have the form 

† ( )( 1)
( ) 0 0 1/21 2

† ( )
0 1/2

( ) ( )
( ) .

2 ( ) ( )

D
i x iEt ma

ma

i E i w J zCx z e
E E i w J z

σ

β σ

σ σ σ λ λψ
σ σ λ λ

+
− + +

−

 − + −
=  − + 

k k
k   (27) 

with the same normalization coefficient as in (24). 

Now let us turn to the region 0z z≥ . In this region, the solution of the equation (11) is expressed 
in terms of the linear combination of the functions ( )vJ x  and ( )vY x , where ( )vY x  is the Neumann 
function. The positive energy mode functions are presented as  

† ( )( 1)
( ) 0 1/ 22 2

† † ( )
0 0 1/ 2

( ) ( )
( ) .

2 ( ) ( )

D
i x iEt ma

ma

E i w Z zCx z e
E i E i w Z z

σ

β σ

σσ λ λψ
σ σσ λ λ

+
+ − +

−

 − −
=  − + + 

k k
k   (28) 

where 

1/2 1/2 1/2( ) ( ) ( ).ma ma maZ z J z B Y zβλ λ λ± ± ±= +     (29) 

From the boundary condition (23) one finds 

1/2 0

1/ 2 0

( ) ,
( )

ma

ma

J zB
Y zβ

λ
λ

+

+

= −
      (30) 

for both the upper and lower signs in (29). Similar to the case of locally AdS geometry without the 
brane, the eigenvalues of λ are continuous, 0 λ≤ < ∞ . 

The normalization condition is given by (15) with the integration over z in the range 0[ , ).z ∞
From that condition we get 

2
2

2

1
(2 ) .p D

q

B
C V a βπ

λ
− +

=
     (31) 

The negative energy modes in the region 0z z≥  are given by 
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† ( )( 1)
( ) 0 0 1/22 2

† ( )
0 1/2

( ) ( )
( ) .

2 ( ) ( )

D
i x iEt ma

ma

i E i w J zCx z e
E E i w J z

σ

β σ

σ σ σ λ λψ
σ σ λ λ

+
− + +

−

 − + −
=  − + 

k k
k   (32) 

with the same normalization coefficient as in (24). In the limit when the brane tends to the AdS 
boundary, 0 0,z →  one has 0Bβ →  and the modes (28), (32) are reduced to the modes at the absence 

of the brane, discussed in section 3.  

Having the complete set of fermionic modes, we can evaluate the VEVs of physical quantities 
bilinear in the field operator, ( , ),F F ψ ψ=  with † 0ψ ψ γ=  being the Dirac adjoint. Examples are the 
fermionic condensate, ,ψψ  the current density, ,jμ μψγ ψ=  and the energy-momentum tensor 

( ) ( )( ) ,
2
iTμν μ ν μ νψγ ψ ψ γ ψ = ∇ − ∇      (33) 

where the brackets enclosing the indices in (33) mean the symmetrization. Expanding the field 
operator in terms of the complete set of mode functions and using the anticommutation relations for 
the creation and annihilation operators, for the VEV one gets  

( ) ( ) ( ) ( )10 ( , ) 0 ( , ) ( , ) ,
2

F F Fβ β β β
β

ψ ψ ψ ψ ψ ψ− − + + = − 
   (34) 

where the sum symbol over β  is understood as summation for discrete subset of quantum numbers 
and integration over the continues ones. 

 
5. Conclusion 
 

Thus, we have considered the complete set of fermionic modes in locally AdS spacetime with 
toroidally compactified subspace in Poincaré coordinates. Along the compact dimension, the field 
operator obeys quasiperiodicity conditions (3) with general phases. These conditions lead to the 
quantization of the momentum components with the eigenvalues (8). In the boundary-free problem, 
a complete set of solutions to the Dirac equation is given by (21) and (22) for the positive and negative 
energy modes, respectively. 

At the presence of a brane, an additional boundary condition is imposed on the field operator. 
Here we have discussed the most popular reflective boundary condition for spinor fields, namely, the 
bag boundary condition (23). In the region between the brane and AdS boundary, 00 ,z z≤ ≤   the 
eigenvalues of the quantum number λ  are quantized by the boundary condition on the brane. These 
eigenvalues are expressed in terms of the zeros of the Bessel function 1/2 ( )maJ x− . The corresponding 
positive and negative energy fermionic mode functions are presented as (24) and (27) with the 
normalization coefficient defined by (26). In the region between the brane and the AdS horizon, the 
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eigenvalues of λ  are continuous and the complete set of modes is given by (28) and (32) and the 
normalization coefficient is defined as (31). Given the complete set of the mode functions, the VEVs 
of physical quantities quadratic in the field operator are evaluated by using the mode-sum formula 
(34).  
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