YAK 577,352,315 + 23

БИОЛОГИЧЕСКАЯ ЦЕЛЕСООБРАЗНОСТЬ НАДМОЛЕКУЛЯРНОЙ ОРГАНИЗАЦИИ МЕМБРАННЫХ СИСТЕМ

С. М. МАРТИРОСОВ

На примере взаимодействия Н⁺ -АТФ-азного комплекса и калиевого нонофора, а также ряда других систем дается разбор гипотезы о структурном воздействии различных механизмов мембраны.

Ключевые слова: мембранные системы, взиимодействие, транспорт, регуляция

Клетка как термодинамически открытая система нуждается в постоянном потоже эпергии, веществ и информации через свою граничную мембрану, отделяющую внутриклеточное содержимое от окружающей среды. Все три потока тесно взаимосвязаны. Трансформация эпергии сопровождается перераспределением веществ по обе стороны мембраны, а перераспределение веществ может привести к информационному сигналу. Потоки эпергии, вещеста и информации проходят через различные мембранные системы переноса и регуляции. О том, как могут взаимодействовать мембранные системы, рассказано в данкой статье.

1. Теория косвенного биоэнгргетического взаимодейстоия

В соответствии с теорией Митчелла [40, 41], всли в одном месте мембраны какая-то транспортная система вырабатывает определенную разность электрохимических потенциалов $\Delta \mu$, то в другом месте ее эту запасенную энергию может использовать любая другая система поравоса или регуляции. Известно, что

$$\Delta \mu_i = RT \ln (a_i)_{cp}/(a_i)_{RS} + F\Delta \Psi_i$$

где первое слагаемое является энергией, свизанной с асимметричным распределением веществ, а второе слагаемое—энергия электрического поля на мембране, отнесенная на моль переносимого вещества. Индекс относится к заданному нону, $(a_i)_{cp}$ и $(a_i)_{-1}$ —соответственно активности (концентрации) нона в среде и в клетке, $\Delta \Psi$ —разность электрических потениналов на мембране, R, T и F—газовая постоянная, абсолютная температура и число Фарадея соответственно.

Итак, если первичная система вырабатывает $\Delta \mu_{\rm B}$, то вторичная система может использовать либо «концентрационную батарею», либо энергию электрического поля, либо обе вместе, и тем самым осуществлять некие функции, связанные с потреблением энергии. Например, механическую, осмотическую, электрическую и химическую работы.

В го же время первичная система, которая вырабатывает $\Delta \mu_i$, т. е. создает градненты электрического поля и концентрации, потребляет стороннюю энергию: химическую при деградации органических соединений и энергию солнечного света.

Так как $\Delta\mu_1$ является термодинамической величиной, которая одинакова во всем данном замкнутом объеме, то первичные и вторичные молекулярные механизмы могут находиться и значительном отдалении друг от друга, и тем не менее взаимодействие между ними будет осуществляться с той же эффективностью, как если бы они находились рядом. Многочисленные факты показывают справедливость этой концепции опосредованного через $\Delta\mu_1$ взаимодействия между мембранными системами. Тем не менее остается певыясненным вопрос о том, всегда ли это гак? Известно, что белки мембраны подвержены латеральной диффузии и могут образовывать при соприхосновении ломены более того, такие сложно организованияе висамбли, как редокс-цени и хроматофорные образования, представляют собой пример структур, в которых белки занимают строго заданные места, и поэтому можно говорить о генетически предопределенной организации белковых ансамблей.

В связи с этим встает вопрос: может ли клетка оказаться в таких условиях, когда две независимые системы перспоса вступают в структурный контакт в соответствии с физиологической целесообразностью. Подобные случаи разобраны в последующих разделах данной статья, в основном на примере внутримембранного взаимодействия двух понных систем.

2. Распределение понов К и Ди,

Бактериальные клетки аккумулируют значительное количество понов К +, в зависимости от вида бактерий—от 0.2 до 4 М. Папример, Е. coli и Salmonella накапливают до 0,25 [49]. S. faecalis—до 0,6 [52]. Staphylococci до 0,7, а предельные галофильные организмы до 4 М этах ионов [14, 29]. С термодинамической точки эрения более существенной оказалась величина градиентов К + между клеткой и средой. Показано, что бактерии способны создавать чрезвычайно высокое отношение концентраций в клетке относительно среды. Например, у Е. coli и S. faecalis, на которых проведены основные исследования по прироле траиспорта ионов К +, это отношение превышает 105 [11, 26].

В то же время на транспорт любого вещества у бактерий может затрачиваться либо энергия, высвобождаемая при гидролизе АТФ (или другого макроэргического соединения), либо $\Delta\mu_{\rm H}$. Измеренная величина мембранного потенциала у бактерий ($\Delta\Psi$) обычно не превышает 150—180 мВ (отрицательно в бактериальной клепкет [23, 24]. Поэтому при нассивном поглощения нонов К по градиенту электрического поля распределение могло бы достигнуть только 10^3 , что значительно инже измеренного распределения нонов К +. Для указанного ранее рас-

пределения, достигающего 105-106, нужен был бы $\Delta\Psi$, равный 300-350 мВ. На основании этого было высказано предположение, что в мемпране бактерий функционирует спецнальный К+-АТФ-азный комплекс. нопользующий энергию, высвобождаемую при гидролизе терминальнот макроэргического фосфора, для транспорта понов К внутрь клетак Такая система была обнаружена в клетках Е. coli Эпштейном с соявт, и названа Кор-системой транспорта вонов К - [18, 20]. Так как и клетках впервые была обнаружена К -- АТФ-аза, она была подвергнуга тшательному анализу. Удалось установить, что три структурных гена kdpA, kdpB и kdpC кодируют три мембранных белка с молекулярными весами 47000, 90000 и 22000 Д соответственно [28]. Кор-система способна создавать очень высокое распределение по нонам К . достигающее 4:106 [26]. Следует заметить, что это распределение достигастся не за счет упеличения внутриклеточной концентрации нонов К , а за счет того, что Кфр система в физиологических условиях обычно находится в репрессивном состоянии и включается в работу при очень низких концентрациях конов К св среде. Поэтому, накачивая в клетку даже 10^{-1} M понов K $^+$, она забирает их на среды, содержащей 10^{-6} и менее нонов К+.

Несмотря на всю важность открытия репрессибельной К -АТФ-азы, которая включается в работу только при очень низких копцентрациях нонов К т, когда не работает другая основная система транспорта нонов К (см. ниже), теория мембранного транспорта не обогатилась новой идеей.

3. Протонно-калиевый насос

При физиологических концентрациях ионов К' в окружающей среде свыше 1 мМ эти ионы поглощаются бактериями с помощью системы, у которой К_м лежит в пределах 1—3 мМ [26]. Эпштейн с соавт. [44] установили, что такон главной системой поглощения ионов К у Е. сой является Trk-система (ранее она называлась TrkA-система), генетический анализ которой показал [19, 46], что мутации в четырех несвязанных локусах—!rkA, trkD, trkE и trkC—отражаются на транспорте нонов К. Кинетический же анализ позволил установить, что функционирование этой системы требует одновременного присутствия АТФ и Дµ [45]. Были высказаны предположения, что АТФ нужен как источник энергии, а Дµ как регулятор транспорта [11]; Дµ — источник энергии, АТФ — модулятор транспорта, так как транспортер работает в фосфорилированном состоянии, по не гидролизует АТФ до неорганического фосфора и АДФ [11, 51]; наконец, и АТФ, и µ + служат источниками энергии для противоградиентного движения ионов К внутрь

В дальнейшем с помощью поноселективных электродов было установлено, что поток нонов K + через Тгк-систему для анаэробно выращенных бактерий E. coli всегда сопровождается выбросом из клетки дополнительного количества понов H. Эта компонента потока H+ со-

бактернальных клеток [25].

ставляет около 30% от общей секреции кислоты в период гликолиза у бактерий [3, 16, 32]. Другой особенностью этого обмена ионов Н п клет-ка на ионы К среды является его чувствительность к N,N'-дициклогексилкарбодивмиду (ДЦКД) — ингибитору 11 - АТФ-азиого комплекса 1-1-F₀. При ДЦКД-чувствительном обмене Н на К из клеток выбрасываются 211 и один авион лактата, а в клетку входит один ион К [32], т. е. имеет место сохранение макроскопической электронентральности потоков ненов в отношении Н :К (лакт = 2;1:1. Такая же стехнометрия понного обмена была найдена и для грамположительных бактерий [38].

Самым удивительным фактом оказалась устойчивость стехномет--рин 211-ж к различным внешним воздействиям как у E. coli [3, 17]. так и v S. Jaecalis [38]. Было показано, что стехнометрия П '/К -обмена у анаэробно выращенных бактерий не изменяется при изменения температуры от 12° до 37°, активности нонов К в среде-от 0,1 до 10 мМ, рН - от 5.7 до 8,5, а также при изменении типа экзогениого истачника энергии (глюкозы или молочной кислоты у Е. coli) в абсолютных величии потоков новов Н и К :. Устойчивость стехнометрии ЛИКЛ-чувствительного обмена 211 : К предполагала существование жесткой структурной связи между потоками П и К+. Поэтому было высказано предположение, что в мембранах анаэробно выращенных гликолизирующих бактерий функционирует протоино калиевый насос, обменивающий 211 клетки на один нов К гереды и чувствительный к ДЦКД [3, 17]. Это допущение означало, что, во-первых, транспорт ионов К+виутрь требуст АТФ и, во-вторых, что этот транспорт сопряжен с выбросом понов Н ..

Два вопроса требовали ответа: а) почему транспорт иннов K^+ у глажолизирующих анаэробно вырашенных бактерий сопровождается выбросом ионов H^+ и б) почему этот обмен чувствителен к ДЦКД, ингибитору H^- АТФ-азы F_1 - F_0 ? Можно допустить, что и анаэробно выращенных клетках E coli. а тем более у анаэробов S, faccalis отсутствуют редокс-цепи, поэтому единственным генератором мембранного потещиала $\Delta\Psi$ является F_1 - F_0 . Иными словами, F_1 - F_0 генерарует $\Delta\Psi$, а ионы K послощаются клетками в ствет на генерацию $\Delta\Psi$, т. е. для поглощения клетки нуждаются и в $\Delta\Psi$, и в $\Delta\Psi$ этих ионов.

Намерение мембранного потенциала с помощью ТФФ+ электродов (гетрафенилфосфоний-проникающий катион) показало, что уже исходно у Е. сой имеется ДФ около 0,12В, при рП 7,5. Введение в среду глюкозы кратковременно, на периол функционирования 211 К обмена, который длится несколько минут (см. раздел 4), увеличивает ДФ до 0.14—0,15В. В S. faccalis мембранный потенциал в отсутствие экзогенного источника эперии близок к нулю и становится равным 0,15В после добавления глюкозы [39]. Таким образом, обмен 2П на К сопровождается генерацией ДФ, которая снимается с помощью ДПКД.

Чтобы идентифицировать системы переноса 11- и К+, дальнейшую работу проводили с мутантами Е. coli, имеющими точно охирактеризованные дефекты. Мутант Е. coli ТК 509 с пеработающей Trk-системой [46] не обладал ин 2H-/K+ обменом, ин способностью увеличи-

вать $\Delta\Psi$ от 0,12 до 0,15В, как эго имело место у дикого типа E, сой, K-12 (л). С другой стороны, естественно было ожилать, что блокирование функций F_1 - F_0 с помощью мутаций в ипс-кластере, кодирующем структуру этого $\Lambda T\Phi$ -азного комплекса, должно привести к исчезновению ДЦКЛ-чувствительного потока нопов H^+ из бактерий. Опыты показали, что в мутантах с дефектами в α -, β и γ -субъедивинах $\Lambda T\Phi$ -азы F_1 , входящей в состав $\Lambda T\Phi$ -азного комплекса F_1 - F_2 , Φ -, Φ

Эксперименты на мутлитах с дефектами по Trk-системе и H -ATФ-азному комплексу F_1 - F_0 с несомпенностью показывают, что у внаэробно вырашенных гликолизирующих бактерий имеется гесная связь между функциями F_1 - F_0 персносящего ионы H^+ из клетки в среду, и Trk-системой поглошения K^+ . Блокирование функций одной системы велет х потере функций другой. Поэтому предположение о существования в бактериях H^+ - K^+ -пасоса стало обретать молекулярное основание. Однако казалось невероятным, как две генетически независимые системы, такие, как F_1 - F_0 и Trk, создают обмен, эквивалентный функции протоино-калиевого насоси. Более того, как видно из следующего раздела, обе системы принимают деятельное участие и регуляции тургориого

лавления клетки.

4. Регулиция тургорного давления бактерий

Еще в 1965 г. Шульц и Эпштейн [48] показали, что резкое новышение осмотического давления в среде приводит к значительному, но краткопременному возрастанию скорости поглошения К у Е. coli. Повже было установлено, что скорость поглощения К возрастает при увеличении осмотичности среды для обеих калиевых транспортных систем—Trk и Kdp [45].

Изучение потоков К с помощью поноселективных электродов выявило необычный характер поглощения К у Е. coli в средах, содержащих от 0.1 до 10 мМ К+ при рН выше 7,0 [1, 2, 15]. Вначале, в течение 3—5 мин наблюдается интенсивное поглощение К через Trk-систему [6, 33]. Затем этот процесс и последующий выход К в среду спонтанно прекращаются. Через 15—25 минут начинается более медленное и длительное поглощение этих понов через TrkF-систему. Подобное явление наблюдается только при увеличении осмотического давления среды, и чем выше тоничность среды, тем дольше идет поглощение К через Trk-систему [2, 16]. При осмотическом равиовесии между клеткой и средой или уменьшении тоничности среды поглощение К через Trkсистему полностью кодавляется, в то время как медленное поглощение этих ионов через TrkF-систему сохраняется. Подавление функции Trkсистемы уменьшением осмотического давления среды сопровождается исчезновением ДЦКД-чувствительной секреции нопов Ит, т. с. при отсутствии фактора повышения осмотического давления в среде исчезает ДЦКД-чувствительный обмен 2H :К .

С помощью мутантов E, coli (см. раздел 3) было показано, что в этот обмен вовлечены как $F_1 \cdot F_0$, так и Trk. Следовательно, когда тургор клетки уменьшается при увеличении осмотического давления среды и соответствению уменьшается объем жлеток, включается не только система поглощения K^+ , но и протонный насос $F_1 \cdot F_0$.

Было высказано предположение, что регуляции тургора клеток осуществляется со стороны периплазматического пространетва [31]. Эта имотеза включала в себи следующие допущения: потоки И в К через F_1 - F_0 и Trk систему взаимозависимы и подчиняются жесткой стехнометрии (2H k); протонный насос F_1 - F_0 у грамотрицательных бактерий состоит не из двух функциональных белков, а из трех; третий белок является периплазматическим белком-клапаном, который механачески открывает и закрывает вход в H -канал F_0 в зависимости от увсличения или уменьшения осмотичности среды.

Таким образом, постулируется, что осмотическая регуляция поглощения K^+ у E, coli осуществляется не через Trk-систему, а с помощью H^+ - $\Lambda T\Phi$ -азного комплекса F_1 - F_0 .

Из предложенной гипотезы вытекает ряд следствий. АТФ-зависимый обмен 211 т: К т с участием F1 F0 у грамположительных бактерий S. Jaecalis, лишенных периплазматического пространства, не должен зависеть от осмотического давления среды, что было экспериментальпо подтверждено [38]. Роль периплазматического пространства в регуляции функций F_1 - F_0 подтверждается гем, что в сферопластах, приготомленных из E. coli, обмен 2H 1: К - не чувствителен к осмотическому давлению среды. Другой существенный факт был получен на мутантах E. coli AN 382, у которых Н -канал F₀ резистентен к ДЦКД [7, 9, 34, 36]. Обмен 211 т:К т у этих мутантов терял чувствительность к осмотическому давлению среды, хотя скорость обмена 211 :К г оставалась неизменной. Таким образом, мутания по нисВ гсну ведет не только к ДЦКД-резистентности 11 -канала, но и к потерс его чувствительности к гоничности среды. Имеются и другие данные, подтверждающие регуляцию обмена 211 :: К + с наружной стороны Н 1 - канала F₀, входящего в комплекс F₁·F₀. Если сперва уменьшить топичность среды, чтобы клетки E, coli K-12 (A) набухли, затем добавить в среду ДЦКД и через 15 мии резко увеличить гоничность среды, то вначале происходит обмен 2H+:К+ и только через некоторое время замечается ингибирующее действие ДЦКД. ДЦКД подавляет этог обмен с некоторым запозданием. Если же ДПКД был введен в среду при высокой тоничности, когда клетки сморщены и должен начаться обмен 2Н 1:К при введении в срелу источника энергии, то ДЦКД сразу же полностью подавляет ero. Между периплазматическим белком-клананом и ДЦКД идет конкуренция за вход в Н + -канал F₀. Все эти косвенные факты дают основание думать, что надмолекулярная физиологическая конструкция протонного насоса $F_1 \cdot F_0$ состоит из трех белков: $F_1 \cdot F_0$ и периплазматического

белка-клапана (БК, см. рис.). Кроме того. Тгк-система поглощения К+, т. е. основная система этих бактерий, ответственная за сохранение тургора клетки, по-видимому, не имеет собственного осмотического ре-

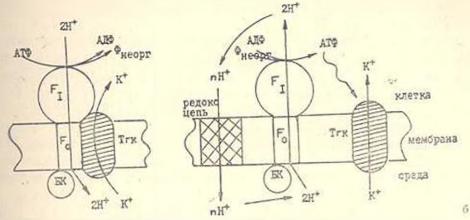


Рис. Характер влаимосвили H^+ -АТФ-язной F_1 - F_0 с калиелым конофором Trk в анаэробных и аэробных бактериях. ат H^+ -АТФ-язный комплекс F_1 - F_0 образует с транспортером ионов K—Trk суперкомилекс в анаэробных гликолизирующих бактериях. Этот суперкомилекс работает, как протоино-калиевый пасос, обменивающий $2H^+$ клетки на одии пои K^+ среды [2, 10, 35]. BK—белок-кляцан, расположенный в периплазматическом пространстве грамотрицательных бактерий, который открывает и закрывает H-канал F_0 в зависимости от тургорного давления клетки [32]. 6) Te же системы, работающие порознь у аэробно выращенных E сой. В этом случае Trk система в качестве источника энергии использует энергию электрического поля, а $AT\Phi$ служит модулятором процесса [37], в то время как дыхательная цень, выбрасывая какое-то количество новон III.

a

поддерживает пужную величину Др н+.

гулятора. Если белок-клапан у Е. coli не функционирует, го поглощеине К через Тгк-систему теряет свою чувствительность к осмотическому давлению среды.

5. Симбиоз молекулярных механизмов

Это пока гипотеза [10, 12, 35], котя и неплохо обоснованная. Допускается, что две независимые транспортные системы— $F_1 \cdot F_0$ и Trk—способны к комплементарному структурному объединению внутри мембраны для совместного использования энергии гидролиза АТФ (рис., а). Такое структурное объединение систем дает возможность создать одновременно распределение К между клеткой и средой около 10^5 , $\Lambda p H I$ и $\Delta \Psi$ около 0.15 В при фосфатном потенциале клетки около 50 кДж, в

то время как дыхательная цепь или $F_1 \cdot F_0$ могут создать μ_{H^\pm} лишь около 20 кДж ($\Delta\Psi$ 0,15В и рН 1), что совершенно недостаточно для распределения K^\pm в 10^5 при непрямом взаимодействии между $F_1 \cdot F_0$ и калиевым транспортером.

Образование суперкомплексов, составленных из $AT\Phi$ -азного комплекса F_1 - F_0 и калиевого транспортера, может быть как у грамотрицательных, так и у грамположительных бактерий. У грамотрицательных бактерий к этому суперкомплексу добавляется периплазмати-

ческий белок-клапан (рис., а), который регулирует время включенного состояния суперкомплекса ($F_1 \cdot F_0$ —Trk—БК).

Суперкомплекс, состоящий из F₁-F₀ и калиевого транспортера Trk, обладает несомненной биологической и термодинамической целесообразностью.

Калиевый транскортер, например, Tek-спетема, лишен собственното преобразователя энергии. При объединении с F_1 - F_0 калиевая система становится АТФ-заиненмой, что и наблюдали ряд авторов. Следонательно, один преобразователь энергии обслуживает два понофора. F_0 и Tek-систему, r, e, протонофор и K-нонофор. Таким путем постигается структурная экономия.

Эта система очень экономию расходует и энергию гидролиза АТФ, что крайне важно при таком низкоэнергетическом процессе как гликолиз. При обменс 2H =: K часть эпергии гидролиза АТФ затрачивается

на создание $\Delta \mu_{\perp}$, а другая—тратится на подпержание $\Delta \mu_{\perp}$. В общей сложности получается, что когда системы работают порозны то к. п. д. этих систем не превышает 10-15%, в то время как при совместной их работе он выше 60-70%.

Из вышеналоженной гипотезы вытекнюг два важных следствия:

1. Если этот супоркомилекс способен гидролизовать АТФ при движении понов Н і из клетки в среду, а попов К —в обратном направлении, то при реверсии потоков, когда нопы Н і будут входить в клетку по градиенту электрического поля и копцентраций, а поны К по градиенту концентраций будут выходить из клетки, можно наблюдать синтез

АТФ, если величны $\Delta \mu_{B^{\pm}}$ в $\mu_{K^{\pm}}$ окажутся в сумме достаточными для той эвергии, которая нужна для синтеза ATФ. Это характерно для нопо-обменного пасоса и впервые экспериментально было подтверждено Тарраханом и Глином [22] на эритроцитах для Na $-K^{\pm}$ -насоса.

2. Согласно данной гипотезе, симбноз двух транспортных механазмов целесообразен только при гаком низкоэнергетическом процессе, как гликолиз в анаэробных клетках, когда не работает редокс-цень и пырабазывается всего 2 молекулы АТФ для всех нужд клетки. Поэтому в аэробно выращенных клетках, когда F₁-F₀ занято вместе с редоксненью сънтезом АТФ и когда благодаря этому бактериальная клетка вырабатывает до 24 молекул АТФ, симбноз F₁-F₀ и Trk-систамы становится нецелесообразным, во-первых, потому, что F₁-F₀ вместе с редокснень работает в режиме синтеза АТФ и не может объедичиться с Trk-системой для гидролиза АТФ, во-вторых, редокс-цень вырабатывает

стабильный и высокий $\Delta \mu_{H}$ и обеспечивает выход 24 молскул $AT\Phi$, вследствие чего. Тrk может использовать любой из указанных видов энергии.

Оба следствия нашли подтверждение в экспериментах, проведенных Трчуняном на кафедре биофизики EpГУ [8, 35, 37].

Для экспериментального доказательства первого следствия необходимо иметь на мембране $\Delta\Psi$ в 0.15 В и рН 1, так как 21 , переносимые через F_1 - F_0 , непользуют как $\Delta\Psi$, так и Δ p11. В целом F_1 - F_0 расходуют

 $2 \times \Delta \mu_{H^{\pm}}$ (2 \times 20 кДж) для синтеза одной молекулы АТФ. Оба иона 14

 H^+ переносятся через $F_1 \cdot F_0$ электрогенно, поэтому используют энергию

как АЧ, так и АрН.

Суперкомилекс $\{F_1\cdot F_0-Trk-БK\}$ переносит электрогенно только один ион H^+ и, следовательно, другой ион H^+ не и состоянии использовать $\Delta\Psi$. Поэтому $\{F_1\cdot F_0-Trk\}$ при тех же условиях, которые создаются для $F_1\cdot F_0$, уже не в состоянии синтезировать $\Delta T\Phi$. Иными слова-

ми, $\Delta \mu_{H^{(3)}}$ величиной 20 кДж будет недостаточно для синтеза АТФ с помощью этого суперкомплекса, так как около 12 кДж, которые дает электрическое поле, не будет непользовано вторым новом H . Таким

образом, на $\Delta\mu_H$ (44 кДж) будет использовано только 32 кДж. А этого недостаточно для синтеза АТФ. Поэтому недостающую энергию суперкомплекс должен брать из разности химических потенциалов по нонам K^+ . Это очень важная особенность синтеза АТФ с помощью понообменного $H^+ + K^-$ насоса. Для синтеза же АТФ с помощью $F_1 \cdot F_0$ градиент по K^+ не имеет никакого значения, если на мембране исходно вмеется ΔW около $0.12\,B$.

Другой отличительной особенностью функций суперкомилекса является его стехнометрия. Если при гидролизе АТФ из клетки выносится 2Н г, а в клетку вносится один Кт против градисита концентраций, то при роверски такого насоса на каждый выносимый из клетки нов К по градиенту концентрации в клетку будет вноситься 2Н г, при этом будет синтевир даться одил молекула АТФ.

Третьей отличительной особенностью синтеза АТФ с помощью суперкомплекса является чувствительность этой системы к осмотическому давлению среды. Система будет синтезировать АТФ только при увеличении тоничности среды, гак как, согласно допущению, увеличение тоничности среды открывает вход 11 - канала.

Экспериментально было показано [8, 35], что реверсия потоков нопов H^+ и K^- через эту систему сопровождается одновременным синтезом $AT\Phi$ в соотношении: $AT\Phi:H^+:K^-=1:2:1$. Уменьшение Δ рН или Δ рК на единицу, введение в среду протонофоров или ДЦКД, уменьшение тоничности среды блокируют реверсированный цикл.

Не менее интересными оказались данные, доказывающие второе следствие из гипотезы [37]. Если ивсети в суспензию аэробно вырашенных клеток Е. сой циания и тем самым заблокировать функции редокс-цени, то легко показать, что F_1 - F_0 из режима синтеза переходит в режим гидролиза АТФ, т. е. транспортирует ионы Н+ из клетки в среду. Такие клетки Е. сой становятся эквизалентными анаэробно выращенным бактериям. Олизко при изменении величины потоков И+ и К, в зависимости от условий окружающей среды наблюдается изменение стехиометрии ДЦКД-чузствительного обмена И+ на К = от 0.5 до 4.5. Неустойчивость стехиометрии является важным свидетельством независимости функционирования F_1 - F_0 и Тrk в аэробно выращенных E. coli (рис., 6).

Особенно паглядно разъединенность систем переноса $F_1 \cdot F_0$ и Trk видна при исследовании потоков H^+ и K^+ в зависимости от температуры. Если для потока новов H^- через $F_1 \cdot F_0$ величина Q_{10} была близка

к 3. го для калиевого нонофора Тгк она была ниже 1,5, что прямо указывает на независимость работы обенх систем: H^+ -АТФ-азный комплекс $F_1 \cdot F_0$ функционирует как фермент с Q_{10} , равным 3, в то время как «диффузионный» калиевый канал Тгк работает как пассивиая система с низким Q_{16} . В то же время в анаэробно выращенных клетках обе системы имеют Q_{10} , равный 3, что и должно быть в соответствии с гипотетическим рисунком. В то же время арсенат, препятствующий образованию АТФ, подавляет транспорт нонов K^+ в обоих случаях. Согласно рисунку (б), этот факт подтверждает гипотезу ряда авторов о гом, что Тгк-система нуждается в $\Lambda \mu_{11}$ как источнике энергии, а АТФ служит модулятором процесса [11, 51]. Одиако надо отметить, что эта функция Тгк подобных систем переноса K^+ может наблюдаться только в условиях аэробноза.

6. Внутримембранное взаимодействие белков

В настоящее время имеется множество данных, полученных как на интактных мембранах, так и на солюбилизированных белках, которые показывают, что мембранные системы представляют собой олигомерные формы простых функциональных единии. Это относится к АТФазам, перспосчикам, рецепторам, интохромам и г. д. Клингелберг в своем интересном обзоре [27] высказывает предположение, что олигомерное состояние гомологических структур в изолированных мембранах могло бы служить критерием интактности выделенного механизма.

Однако ассоцнация гомологических мембранных единиц, как нам кажется, затрагивает лишь один аспект проблемы внутримембранного язанмодействия белков. Ряд экспериментов, включая и вышеизложенные, указывают на образование внутри мембраны гетерологических суперструктур. Два или более мембранных белков могут образовывать домен для мембранной регуляции транепорта и клеточного метаболизмя. Рассмотрим некоторые наиболее интересные результаты.

Уже в конце прошлого века было известно, что, когда микроорганизмам даны одновременно два источника углерода, они вначале утилизируют полностью один из них и только после этого начинается утилизация второго источника. Этот феномен известен как глюкозный эффект, так как глюкоза оказывается наиболее предпочтительным источником углерода в силу своей легкой утилизируемости [30]. Сущность явления состоит в способности микроорганизмов включать и выключать некоторые катаболитные опероны. Вначале яключаются опероны, ответственные за синтез ферментов и транспортных систем наиболее легко утилизируемого субстрата.

Глюкоза способна репрессировать экспрессию катаболитных генов двумя способами, известными как катаболитная репрессия и исключение индуктора. Предполагается, что катаболитная репрессия связана с блокадой синтеза ферментов вследствие уменьшения активности мембранной аденилатциклазы (АП). Уменьшение активности АЦ ведег

к блокаде синтеза цАМФ, необходимого для проявления катаболит-чувствительных оперонов.

Явление же, известное как исключение индуктора, есть прямое следствие блокады транспортных систем, переносящих определенные субстраты, которые и являются индукторами соответствующих оперонов.

В расшифровке этих механизмов значительное место занимают работы Бурда и его соавт. [4, 5]. Им удалось показать, что основная система транспорта глюковы у бактерий-фосфосполинруватвависимая фосфотрансферазная система бактерий (ФТС) - играет основную роль в регуляции как катаболитной репрессии, так и при исключении индуктора [4, 5, 50]. Ими было высказано предлоложение, получившее косвенные экспериментальные подтверждения о гом, что ФТС вступает в структурную связь как с. М-протенном, мембранным белком, ответтвенным за транспорт β-галактозидов, так и с мембранной AIL. В обоих случаях при наличии глюкозы в среде ФТС переносит ее внутры клеток и во время этой работы в определенных условиях в состоянии блокировать как М-протени, так и АЦ. В первом случае наблюдается исключение нидуктора, так как, например, лактоза не может пропикнуть в клетку и способствовать экспрессии Іас-оперона, во втором имеет место катаболитная репрессия: АЦ не синтезирует пАМФ. Такое же допущение о внугримембранном взаимодействии белков было впоследствии высказано Петерковским и Газдаром [42] и отношении взаимодействия М-протенна и АЦ.

Различие между идеей о внутримембранном взаимодействии мембравных механизмов, высказанной при изучении взаимодействия F_1 - F_0 с Trk-системой переноса K^+ , и тем, что разработано. Бурдом с соавт [4, 5], заключается в следующем: нонные механизмы вступают в симбиотическую связь, чюмогая друг другу при энергетическом кризисс, в то время как транспортеры сахаров и AU связаны автибиотически функции одной системы исключают работу другой; для взаимодействия H^+ - $AT\Phi$ -азного комплекса F_1 - F_0 и K^+ -ионофора Trk допускается комплементарное или гонетически предопределенное взаимодействие, в то время как в отношении ΦTC и M-белка предполагается случайное взаимодействие, зависящее от концентрации этих белков в мембране.

До сих пор говорилось лишь о бактериальных клетках. Однако феномен гетерологического объединения мембранцых белков известен и для животных клеток. Между многими тканями, как известно, имеется гормональная связь. Показано, что в определенных случаях ренепторы пептидных гормонов вступают в структурную связь с мембраной АЦ животных клеток [13]. Имеются в настоящее время также данные о том, что Na "К "-АТФ-азы клеток животных вступают в структурную взаимосвязь с гликолитическими ферментами, образуя сложные домены [21].

Вопрос сейчас в том, чтобы понять, когда имеет место случайное белок-белковое взаимодействие, а когда это взаимодействие генетически предопределено.

Ереванский государственный уживерситет, кафеара биофизики

Поступило 10.X 1984 г.

ՄԵՄՔՐԱՆԱՅԻՆ ՀԱՄԱԿ<mark>ԱՐԳԵՐԻ Վ</mark>ԵՐՄՈԼԵԿՈՒԼԱՅԻՆ ԿԱԶՄԱԿԵ<mark>ՐՊՄԱՆ</mark> ԿԵՆՍԱՔԱՆԱԿԱՆ ՆՊԱՏԱԿԱՀԱՐՄԱՐՈՒԹՅՈՒՆԸ

U. U. ITUPSBEHURA

Ջրածնային ԱԵՖ-ազային կոմպլերսի և կալիումական իոնոֆորի փոխազդեցության, ինչպես նաև մեժբրանային այլ Համակարգերի օրինակի վրա վերլուծվում է մեմբրանի տարբեր մեխանիզմների սարուկաուրային փոխազգեցության մասին Յիպոթեղը։

BIOLOGICAL EXPEDIENCE OF THE OVERMOLECULAR ORGANIZATION OF MEMBRANE SYSTEMS

S. M. MARTIROSOV

The hypothesis of structural interaction between different membrane mechanisms has been discussed. The results discussed regard the interaction of H -ATP-ase complex and potassium tonophore, as well as some other membrane systems.

JIHTEPATYPA

- Алиханян М. Мартиросов С. М., Петросян Л. С. Докл. АН АрмССР, 58, 94, 1973.
- 2. Диргарыя С. С., Мартиросов С. М. Биофизики, 25, 469, 1980.
- 3. Дургариян С. С. Мартиросов С. М. Биофизика, 25, 654, 1980.
- 4. Каличев И. Ю., Геришинович В. И., Бурд Г. И. Биохимия, 45, 873, 1980.
- 5. Калачев И. Ю., Умярова А. М., Бурд Г. И. Биохимия, 46, 732, 1981.
- Мартиросов С. М., Тринян А. А. Биофизика. 26, 817, 1981.
- 7. Мартиросов С. М., Трчукяк Л. А. Биофизика, 26, 1033, 1981.
- 8. Мартиросов С. М., Трчукян Л. А. Биофизика, 29, 255, 1984.
- 9. Мартиросов С. М., Трчунян Л. А., Варданян А. Г. Биофизика, 27, 48, 1982.
- 10. Мартиросов С. М., Паносия Г. А., Трироян А. А. Блофизика 27 249, 1982.
- 11, Bakker E. P., Harold F. M. J. B. J. Chem., 255, 433, 1980.
- 12, Bourd G. L. Martirosov S. M. Bioelectrochem: Bloenerg, 10, 315, 1983.
- 13. Catt K. J., Dufau M. L. Annu. Rev. Physiol., 9, 529, 1979.
- 14. Christian J. H. B., Walth: J. A. Bi chim Biophys, Acta, 65, 506, 1962.
- 15. Durgaryan S. S., Martirosov S. M. Bigelectrochem. Bioenerg., 5, 554, 1978.
- 16. Durgarvan S. S., Martirosov S. M. Ibid, 5, 561, 1978.
- 17. Durgaryan S. S., Martirosov S. M. Ibid., 5, 567, 1978.
- 18. Epstein W., Davies M. J. Bacteriol., 101, 836, 1970.
- 19. Epstein W., Kim B. S. Ibid, 108, 639, 1971.
- 20. Epstein W., Latmins L. Trends Blochem. Sci., 5, 21, 1980.
- 21. Fossel E. T., Solomon A. K. Blochim, Biophys. Acta, 464, 82, 1977.
- 22. Garrahan P. J., Glynn I. M. J. Physiol., 192, 237, 1967.
- 23. Grintuolene B., Chmellauskaite ... Grinlus L. Biochem, Biophys. Res. Commun., 56, 203, 1974.
- 24. Harold F. M., Papineau D. J. Membr. Blob., 8, 27, 1972.
- 25. Heefner D. L. Mol. Cell Biochem., 44, 81, 1982.
- Helmer G. L., Laimins L. A., Epstein W. In: Membranes and Transport, 2, New-York, 1982.
- 27. Klingenberg M. Nature (London), 290, 449, 1981.

- 28. Leimins L. A., Rheads D. B., Attendorf K., Epstein W. Proc. Natl. Acad. Sci. USA, 75, 3216, 1978.
- 29. Lanyl J. K. Biochim. Biophys. Acta, 539, 337, 1979.
- 30. Magasanik B. Cold Spring Harbor Symp. Quant. Biol., 38, 249, 1961.
- 31. Martirosov S. M. Bioelectrochem. Bioenerg., 6, 315, 1979.
- 32. Martirosov S. M., Trchountan A. A. Ibid, 8, 25, 1981.
- 33. Marticosov S. M., Trchountun A. A. Ibid. R, 597, 1981.
- 34. Martirosov S. M., Trchounian A. A. Ibid, 8, 605, 1981,
- 35. Martirosov S. M., Trehountun A. A. 1816, 9, 459, 1982.
- 36. Martirosov S. M., Techninian A. A. Ibid, 11 29, 1983.
- 37. Martirosov S. M., Trehountan A. A. Ibid, 13, 1955, 1984.
- 38. Martirosov S. M., Petrosian L. S. Ibid, 8, 17, 1981.
- 39, Martirosov S. M., Petrosian L. S., Trehountan A. A., Vartanian A. G. Ibid, 8. 613, 1981.
- 10, Mitchel P. Symp. Soc Gen. Microbial., 20, 121, 1570.
- 41. Mitchel P. J. Bioenerg., 3, 5, 1972.
- 42. Peterkofsky A., Gazilar C. Bioscience Rep., 1. 53, 1981.
- 43. Proverblo F., Hoffman J. F. J. Gen. Physiol., 69, 605, 1977.
- 41. Rhoads D. B., Epstein W. J. Biol. Chem., 252, 1394, 1977.
- Rhvads D. B., Epstein W. J. Gen. Physiol., 72, 283, 1978.
 Rhoads D. B., Waters F. W., Epstein W. J. Gen. Physiol., 67, 325, 1976.
- 47. Schrier S. L. Amer. J. Physiol., 210, 139, 1966.
- 48. Schulte S. G., Epstein W. J. Gen, Physiol., 19, 221, 1965.
- 49. Schules S. G., Solomon A. K. J. Gen. Physiol., 48, 355, 1961.
- 50. Shalgina M. V., Kalachev I. J., Bourd G. I. FEBS Lett., 103, 238, 1979.
- 51. Silver S. In: Bacterial Transport, New York, 1978.
- 52. Zarlengo M. H., Schutts D. G. Biochim, Biophys. Acia, 126, 308, 1266.

«Биолог. — Армении», т. XXXVIII. Лу 1, 1947

УДК 551.510.42

ПРИНЦИП ОПТИМАЛЬНОСТИ 11 МАТЕМАТИЧЕСКОЕ моделирование социоэтологических процессов

ф. Н. СЕМЕВСКИП, С. М. СЕМЕНОВ, Г. А ТОНОЯН

Рассматривается процесс естественного отбора в нопуляциях на определенные форчы поведения. В отличие от классической ехемы отбора по наследуемым признакам в статье виализируется обобщенный процесс отбора по таким признакам, которые чогут распространяться в популяции как за счет наследуемости, так и за счет копирования, ваучения.

Показано, что в рамках ехемы отбора на индивидуальном уровне можно объясинть такие эффекты, как распрострянение в популяции альтруистических черт поведення особей. Подчеркивается, что для количественного анализа такого рода процессов достаточно ранее предложенного авторами [7] математического аппарата, базирующегося на принципе оптимальности для нараметров состояния осоон.

Каючевые слова: социоэтологические процессы, литематическое моделирование.

Наблюдаемые в природе определенные черты организации в системах надорганизменного уровня-популяциях, биоценозах-в современвой биологии объясняются с эколюционных позиций. Та или ппая