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Abstract. The mean free path, the electronic stopping power and the straggling parameter of a heavy 
charged particle moving through a homogeneous free-electron gas are addressed in the low-velocity 
regime and within the dielectric formalism using the Lindhard dielectric function. Simple analytical 
formulas are developed for these macroscopic cross sections, which are more accurate in the whole 
electron density range than those proposed to date by some authors.  
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1. Introduction 
 

The energy loss of swift charged particles moving in a degenerate electron gas is of fundamental 
importance in many fields of science and technology in order to understand the basic properties of 
their slowing down in real solids. Perturbative and non-perturbative theoretical models have been 
devised over the years to investigate the dependence of the electronic stopping power, and other 
macroscopic cross sections (MCSs) like the inverse mean free path and the straggling parameter, on 
the projectile charge and velocity, as well as on the properties of the traversed medium[1,2]. 

The dielectric formalism in the random-phase approximation [1,3] is a perturbative theoretical 
framework that has been extensively used to model the energy loss of charged particles in condensed 
matter (see e.g. [1,2] for reviews). This formalism accounts for the basic features of a homogeneous 
free electron gas (FEG) such as the creation of electron-hole pairs and the spectrum of collective 
(plasmon) excitations [1,3]. However, the electronic density encountered by a projectile along its 
trajectory in a real solid is seldom constant. The local plasma approximation (LPA) offers a sensible 
manner to handle the problem of an inhomogeneous electron density: each volume element of the 
medium is regarded as an independent homogeneous FEG. Then, a given MCS is expressed as a 
volume integral over the MCS evaluated at the local electron density in the solid. 

In spite of its limitations, pointed out e.g. in [4], the LPA has been successfully employed in 
conjunction with the dielectric formalism (implemented through the Lindhard dielectric function) to 
calculate MCSs of charged particles in condensed media. For instance, this methodology is able to 
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describe quite accurately the stopping power of ions at random incidence [5-13], in channeling 
conditions [14] and in grazing incidence on surfaces [15]. Straggling parameters of light ions have 
also been evaluated by means of the LPA [16]. Furthermore, this type of approach predicts 
reasonable mean free paths and stopping powers of electrons and positrons in solids [17,18].  

The calculation, within the dielectric formalism, of MCSs of ions in a homogeneous FEG requires a 
double numerical integral over wave number and angular frequency, and additional integrals over the 
spatial coordinates must be done to apply the LPA. Triple integrals are needed even in the favorable 
circumstance of a spherically symmetric electron density. In this context, analytical approximations 
for the low- and high-energy MCSs of the homogeneous FEG facilitate largely the numerical 
computations.  

The purpose of the present work is to improve, in a systematic way, upon the analytical expressions 
previously suggested for the mean free path [19], stopping power [1, 19, 20] and straggling parameter 
[21] of a slow bare ion moving in a homogeneous FEG. More specifically, the study of the 
asymptotic behaviors of the exact low-velocity MCSs at high and low electron densities allows us to 
develop simple analytical formulas that are in much better agreement with the exact numerical results 
than those employed hitherto.  

 
2. Macroscopic cross sections in the dielectric formalism 

 
Let us consider the slowing down of a bare ion of mass eM m  and charge 1eZ   ( em  and e  are the 

electron mass and the elementary charge, respectively) moving with velocity υ  in a homogeneous 

FEG of density en [Fermi wave number ( )1/323F ek nπ=  ]. We are interested in the MCSs, which 

determine the moments of the energy-loss distribution after a certain path length (see e.g. [22]). 
Within the dielectric formalism, the MCSs are given by (see e.g. [1,3])  
 

with 0,1,2,...n = , where ( , )kε ω  is the complex dielectric function of the FEG, which depends on the 
wave number k and angular frequency ω of the electromagnetic disturbance caused by the passing 
projectile. The dimensions of nZ are (energy)n/length. In particular, 0Z , 1Z and 2Z are equal to the 

inverse mean free path 1λ− , the electronic stopping power S  and the straggling parameter 2Ω , 
respectively.  
 
2.1. Macroscopic cross sections in the dielectric formalism 
 
  In the present article, we deal with slow ions, i.e. such that v is small compared to the Fermi velocity  

/F F ek mυ =   of the FEG. Having recourse to the Lindhard dielectric function obtained within the 
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random-phase approximation (1, 3), the general expression for the low-velocity MCSs becomes 

where 2
0 / ea m e=   and 2

0 /eυ =   are the Bohr radius and Bohr velocity, respectively, 
4 2/h eE m e=  is the Hartree energy and 

with 

In these definitions 2 1 4 1/3
0( ) (4 / 9 )F sx k a rπ π−= =  is the Lindhard parameter of the FEG with the one-

electron radius rs whereas / 2 Fz k k=   stands for the dimensionless wave number (1, 3). We can draw 
a parallel between the stopping power, which is actually a stopping force, of a slow ion in a FEG and 
the frictional (or drag) force experienced by a spherical object that moves at low speed through a 
viscous fluid since both forces are proportional to the projectile’s velocity. Hence, we shall refer to 
the dimensionless quantities 2( )nC x   as “friction coefficients” (this name is assigned to /Q S υ≡   in 
non-perturbative formalisms). 
  The low-velocity approximation (2) implies that ( ) n

n
υ υ∝ , as confirmed by many experiments 

(see e.g. the latest ones (23–25)). On the other hand, the dependence of ( )
n

υ on the density of the 

FEG appears exclusively in 2( )nC x , which may be evaluated either exactly by calculating 
numerically the integral (3) or by resorting to the approximations described below. For this purpose, 
we need to study briefly the asymptotic regimes of Eq. (3) at high and low densities of the FEG. 
When 1,x  i.e. at high electron densities, it is convenient to make the replacement z xz→  in Eq. 

(3). It is then seen that when 1,x  only small arguments of the function ( )f z  contribute to 2( )nC x . 

Therefore, in Eq. (3) we substitute for ( )f z  the first two terms in a series expansion in powers of 2z , 
i.e. 

and straightforward integration yields the asymptotic expressions: 
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for  1,x  

for 1,x  where the constants 

are determined by numerical integration and are listed in Table 1.  
 
Table 1. Numerical constants related to the exact – 2( )nC x  and approximate – 1 2( )p

nC x and 2 2( )p
nC x  friction 

coefficients introduced in the text.  
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2.2. Approximate one-parameter expressions for 2( )nC x  

   Various approximate analytical expressions for the 2( )nC x  coefficients can be achieved by setting 

in the definition of  2( )nC x , where c is some numerical constant. Inserting Eq. (11) in (3) we obtain 

with 2 21 , 1 , 1c c cx cxξ ξ= − = − = + , and 

 
   Equations (12)–(14) are finite at 2 1/x c=  with 1 1(1/ ) / ( 3) ( 0,1,2)p n

nC c c n n+= + = . Equation (13) 

also implies that the constant c must be chosen such that 21c x−< + . The simplest approximation for 
the 2 2( )p

nC x coefficients is accomplished by setting  1 0Rc c= ≡  (i.e. ( ) 1f z ≡ ) in (12)–(14). This was 

done by Ritchie (19) for 0n =  and 1n = , and he also proposed making the substitution 1 0Rc c= ≡ ; 

we denote the resulting coefficients as 1 2( )R
nC x and 2 2( )R

nC x , respectively. Notice that Eq. (11) with 
1/ 2c =  agrees with the exact relation  (1) 1/ 2f =   [see Eq. (4)]. Lindhard and Winther (1) started 

 2( ) 1f z cz= −   
(11) 

 
1 2
0 2

1( )
2

p x xC x g
x
ξ

ξ ξξ

   = − 
   

 
 

(12) 

 
1 2
1 2 2

1( ) ln
2

pC x
x
ξ ξ

ξ ξ
  

= −  
   

 
 

(13) 

 2
1 2
2 2 2 2

1 3( ) 2
2

p x xC x g
x x

ξ
ξ ξ ξ

   = + −  
   

 
 

(14) 

 11 ln 0
2( ) 1

arctan 0

x
if x

g x x

x if x

 +
 < = − 
 

≥  

  

  
. 

 
(15) 



Stopping power of a heavy charged particle || Armenian Journal of Physics, 2017, vol. 10, issue 4 

133 

 

from the Taylor expansion of  ( )f z   to the order  2z  [see Eq. (5)] and took 1/ 3LWc c= ≡ . The 

resulting coefficients shall be denoted as 2( )LW
nC x . Later on, the same LWc c=  approximation was 

adopted by Sigmund and Fu (21) to estimate the friction coefficient for the straggling parameter, Eq. 
(14), when 2 3x <  . Notice that Eq. (14) differs from the definition in (21) by a factor  2x  . 
   It is also important to compare the approximate expressions (12)–(14) with the exact asymptotic 
behaviors (6)–(9). From (12)–(14) one gets 

when 1x  and 

when 1.x Comparison of (16)–(18) with equations (6)–(8) reveals that the first and second terms 
of these expressions coincide (regardless of c) while the other terms may differ from each other. For 
instance, assuming that 1/ 3LWc c= ≡  the approximate equations (16) and (17) are correct (cf. 

expressions (6) and (7), respectively) up to the orders 3( )O x and 2( ln )O x x , respectively. The 
deviations of the numerical constants in the fourth term of Eq. (17) and in the third term of Eq. (18) 
from the corresponding constants in (7) and (8) are 5 / 6 ln 2 0.14−   and 2 / 8 7 / 6 0.07.π −   
Similarly, at low densities equations (19)–(21) can be represented in   the asymptotic form (9), with 
expansion coefficients (1)LW

ny   and (2)LW
ny   which, in general, differ somewhat from the exact (1)

ny   

and (2)
ny values in Table  1. Thus, in the case of  1C    we    have (1) 0.42540701351LW

ny =  and 
(2)
1 0.82255791892LWy =  , and the departure from the exact values of Table 1 is apparent.  
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   As we have seen, 1 2( )R
nC x , 2 2( )R

nC x and 2( )LW
nC x  rely only on the approximation 2( ) 1f z cz= −  

and just differ in the choice of the constant c. To improve the approximation (13) for the stopping 
power friction coefficient, (20) deduced the constant c by equating the 4( )O x−  term of Eq. (20) with 

the first term, (1) 4
1y x− , of the exact asymptotic relation (9). The solution of the resulting transcendental 

equation for the constant c is 0.427FAc = , and it lies between 1/ 3LWc = and 2 1/ 2Rc = . With FAc  the 

approximation (13) for the 1n =  friction coefficient, denoted as 2
1 ( )FAC x , is greatly improved 

compared to the cases with constants 1Rc , 2Rc  or LWc (20).  
   For further improvement of the approximate expressions (12)–(14) we adjust here the constant 
cn for each n (with 0,1,2,...n = ) so as to be in agreement with the exact asymptotic relations (6)–(8) 

and (9) at 1x  and 1,x  respectively, and up to the orders 2( ln )O x x   and   (2 4)( )nO x− + . It is clear 

that this is only possible if 2( )nc c x=   is treated as a function of n and the density parameter 2x of the 
FEG. From the structures of the asymptotic formulas (6)–(9) and (16)–(21) it follows that the desired 
quantities 2( )nc x should behave as 

where nU , (0)
nc  and ( )

nc ∞ are constants. In contrast to (20) three relations are needed here to determine 
these constants. For instance, from Eq. (17) with the asymptotic behavior (22) it ensures that   
 

  Comparison of (24) with the exact equation (7) shows that the latter cannot be exactly satisfied 
for any (0)

1c . However, choosing the value (0) 1/ 3ic =  it is fulfilled up to the leading 2( ln )O x x  
(logarithmic) order. Analogously, comparing (16) and (18) with equations (6) and (8), respectively, 
and taking into account the relation (22) we get (0)

0 1/ 3c =  and (0) 2
2 /16 1/ 4c π= − . These numerical 

constants satisfy the exact relations (6) and (8) up to the orders 3( )O x and (1)O , respectively. 
   Next, similar calculations can be done inserting Eq. (23) into (19)–(21) and keeping only the terms 
up to the order (2 4)( )nO x− + . Comparing now the (2 2)( )nO x− +  and (2 4)( )nO x− +  terms of the resulting 

equations with the corresponding ( (1) (2 2)n
ny x− +  and (2) (2 4)n

ny x− + ) terms of (9) we obtain a set of 

transcendental equations for the unknown quantities nU and ( )
nc ∞  with n = 0, 1, 2 

 

 cn (x2) = cn(0) + O(x2) ;   1x  (22) 

 cn (x2) = cn(∞) – Un x-2 + O(x-4) ;    1,x  (23) 
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and 

 
   Here ( ) 1/2 ( ) 1/2{1 [ ] }/{1 [ ] }n n np c c∞ ∞= + −  with 0,2n = . The set of equations (25)–(27) contains only 

the quantities ( )
nc ∞  and yields the numerical solution provided in Table 1. [Equation (26) for the 

quantity ( )
1c ∞ has been previously deduced in (20), and its solution is the aforementioned value 

( )
1 0.437FAc c∞ = = ]. Then, the expansion coefficients Un of Eq. (23) are determined inserting the 

constants ( )
nc ∞  into (28)–(30). The numerical values of these solutions are included in Table 1. 

   The asymptotic expressions (22) and (23) thus suggest to evaluate 2( )nc x  by an interpolation 

between (0)
nc  at 1x  and ( )

nc ∞ at 1,x  which then covers the entire range of variation of the density 

parameter 2x , from the high-density to the low-density regimes. To this end, we propose the simple 
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interpolation formula 

   The accuracy of the approximations (12)–(14) together with Eq. (31) will be analyzed in section 3. 
 
 

2.3. Approximate two-parameter expressions for 2( )nC x  
 

More accurate analytical expressions for the coefficients 2( )nC x can be elaborated if the function 
( )f z in (3) is approximated in the form 

 

with two yet unknown parameters a  and b . Note that a  = 1/3 and b  = 1/15 in the case of the Taylor 
series expansion of the function ( )f z , see Eq. (5). With this choice for the function ( )f z  
following the same mathematical steps that led to (12)–(14), we now get 
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with 2 , 1H a b g a b= + = − −  . It is easy to see that equations (33)–(35) with a c= and 0b =  agree 
with (12)–(14).  
  Consider now the asymptotic expansions of equations (33)–(35). For instance, from (34) it follows 
that 

when 1x  and 

 

when 1,x  where 2 4h a b= +  . From Eq. (37) it is seen that the exact asymptotic relation (7) can 
now be fulfilled exactly with two parameters a and b. Similar asymptotic expressions can be derived 
for the coefficients 2 2

0 ( )pC x  and 2 2
2 ( )pC x  which then satisfy the exact asymptotic relations (6) and 

(8) with two parameters a  and b .  
  We will treat here the parameter nb b= as a constant with 0,1,2n =  whereas, as in section 2.2, the 

parameter a is regarded as a function of  2x  with asymptotic forms resembling equations (22) and 
(23)  
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1 1/ 3a = and 

1
5 2 ln 2
9 3

b = −  (see Table 1). An analogous procedure for the coefficients 2 2
0 ( )pC x  and 2 2

2 ( )pC x  

furnishes (0)
0 0

1 1,
3 12

a b= =  and 
2

(0)
2 2

1 3 7,
3 16 4

a b π= = −  (see Table 1). It can be observed that 0 1,b b  and 

2b are somewhat larger than the corresponding coefficients in the exact series expansion of  ( ),f z  Eq. 
(5). In the opposite regime of low densities 1x  from (38), (40) and (9) we arrive at a system of 

 
2 2 2

1
1 1 1 1 3( ) ln 2 ln 1

2 2 2
pC x x a b a

x x
  = − + + + −    

, 
 

(37) 

 

( )

2 2
1 4 2 2

2

2 3 2 2 2

1( ) ln
2 ( )

21 1 1 3ln
( ) 2

p H a h HC x
x h g h g h a

a a b h H b aH
x h g h a g g h

  += −  +  
 −    + +  − + −    +      

, 

 
(38) 

 an (x2) = an(0) + O(x2) ;  1x   (39) 

 an (x2) = an(∞) – Vn x-2 + O(x-4) ;   1.x   (40) 



Matevosyan et al. || Armenian Journal of Physics, 2017, vol. 10, issue 4 

138 

 

equations for the constants 1V  and ( )
1a ∞  

where ( ) ( ) ( )1/2 2 1/2
0 1 1 0 1 1 0 1 11 , {[ ] 4 } , 2g a b h a b H a b∞ ∞ ∞ = − − = + = +   with the numerical solutions listed 

in Table 1. The derivation of equivalent equations for ( )
0 0,V a ∞  and ( )

2 2,V a ∞ are straightforward. The 
solutions of these latter equations are also summarized in Table 1.  
  Finally, to cover the entire range of variation of the density parameter 2x  , from the high density to 
the low-density regimes, we propose the interpolation formula [cf. Eq. (31)]  
 

which ensures the correct behaviors of (43) at 1x  and 1x . 
 

3. Results and discussion  
   The “classical” formulas 1 2( )R

nC x , 2 2( )R
nC x  and 2( )LW

nC x , calculated from (12)–(14) with 
0, 1/ 2c c= =   and 1/ 3c = , respectively, are shown in Figure 1 for 0,1n =  and 2. The plotted 

quantities are actually the ratios of these functions to the exact friction coefficients, Eq. (3) with 
0,1n =  and 2. In addition, Figure 1 includes the ratios pertaining to the two-parameter 

approximations 2 2
0 ( )pC x , 2 2

1 ( )pC x and 2 2
2 ( )pC x , calculated by means of equations (33)–(35) with 

1/ 3a = and 1/15b = as dictated by the exact series expansion (5).  
   The approximate coefficients 1 2( )R

nC x , 2 2( )R
nC x and 2( )LW

nC x  (with 0,1,2n = ) depicted in Figure 1 
tend to the exact numerical results when 1x . This is because the leading order terms of equations 
(6)–(8) are reproduced by (16)–(18) regardless of the parameter c. On the other hand, the latter 
equations do not fulfill the asymptotic behavior (9) at small densities, which leads to large deviations 
from the exact values at 1x : the relative errors of the R2 and LW approximations reach 15% to 
21%. The simpler R1 approximation exhibits the same trends, but the relative errors are about 50% 
when x → ∞ . These high- and low-density behaviors are also seen in the case of the two-parameter 

 

( )
( )

(1)0 0 01
12 2 ( )

0 0 0 0 0 1

1
2
H h Ha y

h g h g h a

∞

∞

  +  − =
 +   

 
 

(41) 

 ( )

( )

( )

2
0 01 1 1

2 3
0 0 0 0 1

(2)1 01
12 2 2

0 0 0
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  ++ −
   +  
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approximations (33)–(35) with 1/ 3a =  and 1/15b = . However, the coefficients 2 2( )p
nC x  with 

0,1n =  and 2 are improved, albeit only moderately because the relative deviations are still in the 
range 9% to 11%.  
   Equations (12)–(14) and (33)–(35) with the respective interpolation formulas (31) and (43) 
constitute the main results of this paper. Figures 2, 3 and 4 display, respectively, the approximate 
friction coefficients 1 2( )p

nC x  and 2 2( )p
nC x calculated with these equations for n = 0, 1, and 2, divided 

by the corresponding exact 2( )nC x  functions.  
  All approximate expressions shown in Figures 2–4 have relative errors that diminish with either 
decreasing or increasing electron densities because they reproduce in both limits the exact asymptotic 
behaviors (6)–(9). In particular, 2

1 ( )FAC x  (see Figure 3) reproduces at x<<1 and x>>1 the leading 

(ln )O x  and 4( )O x− terms of equations (7) and (9), respectively; the largest relative departure is 2%. 

The approximations 1 2
1 ( )pC x and 2 2

1 ( )pC x  yield, in addition, the 2( ln )O x x  and 6( )O x− terms, which 

improves substantially the overall agreement with the exact 2
1( )C x coefficient. As a consequence, the 

largest relative errors of 1 2
1 ( )pC x  and 2 2

1 ( )pC x are reduced to 0.75% and 0.09%, respectively (see 

Figure 3). Furthermore, the maximum deviations of 1 2
0 ( )pC x , 2 2

0 ( )pC x , 1 2
2 ( )pC x  and 2 2

2 ( )pC x from 
the corresponding exact values are 0.53%, 0.1%, 0.5% and 0.08%, respectively (see Figures 2 and 4). 
We conclude that the proposed analytical coefficients 1 2( )p

nC x and 2 2( )p
nC x  are very accurate, 

especially at typical densities of conduction electrons in metals, 2 0.25( 1.5 6)sx r≈ ≈ − .  
 

 
 

Fig. 1. Ratios of the coefficients 1 2( )R
nC x , 2 2( )R

nC x    and 2( )LW
nC x  (n = 0, 1, 2) calculated using equations (12)–(14) 

with c = 0, c = 1/2 and c = 1/3, respectively, to the respective exact 2( )nC x  (Eq. (3) with n = 0, 1, 2). The dotted, solid 
and dashed curves correspond to n = 0, 1 and 2, respectively. The curves labeled with the abbreviation 2p are the ratios 
pertaining to 2 2( )p

nC x  (n = 0, 1, 2), calculated using the two-parameter approximations (33)–(35) with a = 1/3 and b = 
1/15.   
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Fig. 2. Ratios of the coefficients 1 2
0 ( )pC x  and 2 2

0 ( )pC x calculated with equations (12), (31) and (33), (43), 

respectively, to the exact 2
0 ( )C x  (Eq. (3) with n = 0).   

 

 
 

Fig. 3. Ratios of the coefficients 1 2
1 ( )pC x  and 2 2

1 ( )pC x  calculated with equations (13), (31) and (34), (43), 

respectively, to the exact 2
1( )C x  (Eq. (3) with n = 1). The ratio of the coefficient 2

1 ( )FAC x , Eq. (13) with 
( )
1FAc c c ∞= =  , to the exact 2

1( )C x function is also plotted. 
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   Before concluding this section, we would like to make a couple of remarks. Figures 1–4 display the 
friction coefficients in the interval of 3 2 310 10x− ≤ ≤ . However, for very high densities approaching, 

2 2 3/ 2.3 10x e cπ −= = ×  the Fermi velocity of the FEG becomes comparable to the speed of light and 
the FEG turns relativistic (26). On the other hand, the FEG undergoes a transition to a Wigner crystal 
at 106sr ≈ , i.e. 2 17.6x =  (27) (see also (28)). Therefore, the applicability of the present analytical 

results is restricted to 3 22.3 10 17.6x−× < <  . 
 
 

 
 

Fig. 4. Ratios of the coefficients 1 2
2 ( )pC x  and 2 2

2 ( )pC x calculated with equations (14), (31) and (35), (43), 

respectively, to the exact 2
2 ( )C x  (Eq. (3) with n = 2). 

 
 
6. Conclusion 
 
   Various analytical expressions for the inverse mean free path, the stopping power and the 
straggling parameter of slow bare ions moving in a FEG of constant density have been considered. 
Approximate formulas for the friction coefficients 2( )nC x that appear in the definition of these MCSs 
have been proposed. As in the previous approaches (1, 19–21) one of these formulas is based on the 
approximation 2( ) 1f z cz= −  in the definition of 2( )nC x , with the single parameter c adjusted to 
yield the correct asymptotic behaviors both in the high- and low density limits. Besides, we have 
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studied the performance of the two-parameter approximation 2 4( ) 1f z az bz= − −  , with the two 
unknown parameters a and b adjusted in a similar manner [or fixed to the values dictated by the 
Taylor expansion of ( )f z ]. In the case of the stopping power friction coefficient it has been shown 
that both approximations are notably more precise than those of (1, 19, 20). In turn, the developed 
approximations for 2

0 ( )C x and 2
2 ( )C x are highly accurate when compared to the results of (19) and 

(21), respectively. The largest errors of the suggested one- and two-parameter approximations do not 
exceed 0.8% and 0.1%, respectively. Going beyond the present model of the FEG we can envisage a 
number of improvements. For instance, exchange-correlation effects are important at metallic 
densities and can be included via a local-field correction to the dielectric function. The corresponding 
friction coefficients may be found by repeating the same steps that led to the results of sections 2.1–
2.3. In addition to the limitations indicated at the end of section 3 it should be recalled that the 
present analysis is valid in the low-velocity limit of the ion, i.e. Fυ υ<  . In addition, since 2

F xυ −∝ , 
the low-velocity regime requires smaller ion velocities when the density of the FEG decreases. In 
these circumstances one should care about ion recoil effects, non-linear effects in the electron 
scattering, and possible quantum properties of the projectile when its de Broglie wavelength becomes 
comparable to the inter particle distances. 
 
   Fortunately, the aforementioned shortcomings of the dielectric formalism in the random-phase 
approximation are greatly suppressed when the LPA together with the dielectric formalism is applied 
to real solids. On one hand, the smallest local electron densities are found in the interstitial regions 
between atoms and are typically 2 1x ≤  . On the other hand, in the constrained LPA (29) the excitation 
of deep core electrons is either neglected or treated separately, limiting in practice the domain where 
the LPA has to be employed to 2 1x ≥ . Therefore, the present analytical results may be useful for 
quick estimates of the mean free path, stopping power and straggling parameter of slow ions in 
solids.  
 

This work was supported by the RA MES State Committee of Science in the framework of the 
research project № 15T-1C231.  
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