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Abstract.  Analytical model for resistive plasma expansion in a static uniform magnetic field in the 
regime in which the magnetic field does not perturb the plasma motion is proposed. The model is based 
on a class of exact solutions for the purely radial expansion of the plasma in the absence of a magnetic 
field. This approximation permits the reduction of the electromagnetic problem for consideration of a 
diffusion equation at the external magnetic field. Explicit solutions are derived for resistive cylindrical 
plasma expanding into a uniform ambient magnetic field. Some numerical examples related to the laser-
produced plasma experiments are presented.  
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1. Introduction  

The problem of hot plasma expansion into a vacuum or into a background plasma in the presence 
of an external magnetic field has been discussed in the analysis of many astrophysical and 
laboratory applications (see, e.g., Refs. [1-5] and references therein). In particular, such process is a 
topic of intense interest across a wide variety of disciplines, with applications to solar[6] and 
magnetospheric [7,8] physics, astrophysics [7,8,9] and pellet injection for tokomak refueling [10]. 

In this paper, we consider analytically resistive cylindrical plasma expanding into vacuum in the 
presence of an external magnetic field. Similar problem has been treated previously in Refs. [11] 
and [12] but for a spherical plasma expansion. The vast literature on the theory of plasma expanding 
into a vacuum or into a background plasma, Refs. [11-12] (see also references therein) illustrate 
various aspects and approaches. In Refs. [13-18] plasma has been considered as a highly conducting 
medium with zero magnetic field inside. From the point of view of electrodynamics, it is similar to 
the expansion of a superconductor in a magnetic field. An exact analytic solution for a uniformly 
expanding, highly conducting plasma sphere in an external uniform and constant magnetic field has 
been obtained in Ref. [13]. The nonrelativistic limit of this theory has been used by Raizer [14] to 
analyze the energy balance (energy emission and transformation) during plasma expansion. A 
similar problem has been considered in Ref. [15] in a one-dimensional (1D) geometry for a plasma 
layer. In our recent papers, we obtained an exact analytic solution for the uniform relativistic 
expansion of a highly conducting plasma sphere [16,17] or cylinder [18] in the presence of a dipole 
or homogeneous magnetic field, respectively. 

The mentioned treatments [13-18] were obtained assuming a somewhat idealized situation: 
uniform expansion, infinite electrical conductivity of a plasma, etc. More realistic models for 
plasma expansion taking into account the deceleration (or acceleration) of the plasma boundary 
have been developed, for instance, in Refs. [19-22] (see also references therein) for spherical [19], 
planar (1D) [20,21] and cylindrical [22] expansions employing ideal magnetohydrodynamic (MHD) 
equations. However, it should be noted that the ideal MHD may not be justified in some 
experimental situations where the typical parameters are such that the plasma resistivity is not 
negligible.[1,3,11,12] In this case, the coupling of the magnetic field with the plasma motion, 
determined by the magnetic Reynolds number, should result in a distortion and diffusion of the field 
across the expanding plasma[11,12]. We present here calculations of the electromagnetic field 
configuration in the stages preceding significant deceleration of the plasma and in the regime in 
which the magnetic field does not perturb the purely radial motion of the cylindrical plasma. The 
latter assumption is valid at large initial ratios of plasma energy density to magnetic field energy 
density.  
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2. Resistive MHD model 
Usually, the motion of the expanding plasma boundary is approximated as the motion with 

constant velocity (uniform expansion). In the present study, a quantitative analysis of plasma 
dynamics is developed based on a cylindrical model. Within the scope of this analysis, the 
nonuniform plasma expansion process is examined. We consider resistive collision-dominated 
magnetized plasma expanding into vacuum in the presence of a uniform and constant magnetic 
field. The relevant equations governing the expansion are those of resistive MHD [23], assuming 
that the characteristic length scales for plasma flow are much larger than the Debye length and 
Larmor radius of the ions. The set of equations describing the dynamics of this process is:  
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with  0⋅ =H∇  , where  H is the magnetic field strength,  2 / 4D c πσ=   is the diffusion coefficient,  
ρ  ,  u  ,  p   and  σ   are the mass density, the velocity, the pressure and the electrical conductivity 
of the plasma, respectively. In this paper we assume an isotropic and homogeneous electrical 

conductivity (and hence the diffusion coefficient  
1

2
D  ) of the plasma σ . The equations above 

must be accompanied by the equation of state and the equation for entropy. Using the 
thermodynamic relation between entropy, pressure, and internal energy as well as Eq. (1) the 
equation for pressure reads [23]  
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Here  γ   is the ratio of the specific heats,  j   is the current density in a plasma which after the 
elimination of some unimportant terms from the generalized Ohm's law [23] is reduced to the form  

1
[ ] ,

c
σ  = + × 
 

j E u H  
                (3) 

where  E  is the electric field strength. Here it is convenient to introduce the vector potential  A . 
Within the scope of the present study, the free charge density is absent and a suitable gauge  

0⋅ =A∇   allows the electric and magnetic fields to be determined from the vector potential  A ,   
1

, .
c t

∂= − = ×
∂
AE H A∇ (4) 

Then from the last expression in Eq. (1) one can derive a similar equation for the vector potential  A   

[ ] 2 .D
t

∂ = × × + ∇
∂
A u A A∇  

(5) 

In deriving Eq. (5) we have neglected the displacement current which is justified for the 
nonrelativistic expansion of the plasma. More specifically this approximation is valid at  
4 1πστ D ,  where  2 24 /R cτ πσ=D  is the characteristic diffusion time of the magnetic field and R  

is the characteristic size of the system, taken here as the radius of the cylindrical plasma. 
Alternatively, this inequality implies that  cτD   is much larger than the plasma radius, c Rτ D  , 

which is well justified for the nonrelativistic expansion velocities. 
The neglect of the Hall current in Eq. (3) and the assumption of a scalar electrical conductivity for 

the magnetized plasma is justified when the characteristic time for the Coulomb collisions  1
cν
−   

(where  cν   is the collision frequency) is much less than the cyclotron period of the electron. 
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Therefore, in this highly collisional regime the conductivity  σ   is essentially a function of plasma 
temperature alone [24]. Hereafter it is assumed that the plasma temperature and the conductivity  

( )tσ are uniform and are the functions only of time. 
The system of Eqs. (1)-(5) can be used for determination of the dynamics of the expanding plasma 

as well as for the investigation of the evolution of the induced electromagnetic fields. For further 
simplification of this system, we note that as long as the Lorentz force density  1 [ ]c ×j H   and the 

Joule dissipation  2 /j σ   terms are negligible compared with the hydrodynamic terms in the left 
hand side of Eqs. (1) and (2), respectively, the plasma motion is a free radial expansion. For many 
realistic situations with laser-produced plasmas the free expansion is realized when the kinetic 
energy density of the expanding plasma is greater than the magnetic field energy density [1] (high-
beta plasma),  2 2

0/ 2 / 8u Hρ π>  , where  0H   is the strength of the initial unperturbed magnetic 

field. This is a necessary condition that the expansion remains radial and cylindrical. It has been 
shown [19] that the system of Eqs. (1) and (2) allows in this case the self-similar solutions for the 
quantities  ρ  ,  u , and  p   which are realized under specified initial conditions. These solutions 
are characterized by a radial velocity distribution linearly dependent on the radial coordinate  r  . At  

( )r R t≤ , ( , ) [ ( ) / ( )]ru r t r R t R t=   , where  ( )R t   and  ( )R t   are the radius and the velocity of the 

plasma boundary. In addition, the velocity  ( , )ru r t   vanishes at  ( )r R t> , ( , ) 0ru r t = . The self-

similar solutions for the density  ρ   and the pressure  p   as well as the criterion of the violation of 
the free expansion solutions are discussed in Ref. [19]. However, we would like to emphasize that 
since the hydrodynamic terms are reduced rapidly as the plasma expands and the Joule heating 
increases the plasma temperature and the electrical conductivity the electromagnetic terms in the 
right hand side of Eqs. (1) and (2)  will no longer be negligible at the final stage of the plasma 
expansion when plasma may fully be stopped and deformed by the magnetic field pressure. As 
mentioned above, the average plasma pressure  p   is strongly reduced compared to the magnetic 
pressure and the model of the purely radial expansion clearly becomes invalid in this case. 
Nevertheless, if the critical time interval  tΔ  , where  2 / 8p H π<  , is much smaller than the typical 
time scale of the plasma flow (up to the full stop), the contribution of this interval to the overall 
plasma dynamics is negligible and use of the radial expansion model is justified. 

In the next sections, we will use the profile of the plasma radial flow velocity  
( , ) [ ( ) / ( )]ru r t r R t R t=    together with Eq. (5) to investigate the electromagnetic field configuration 

generated by the expanding cylindrical plasma. 

 
3. Solution of the moving boundary and initial value problem 

In this section, we consider the moving boundary problem of the plasma cylinder expansion in the 
vacuum in the presence of the constant and homogeneous magnetic field  H0  . Consider a 
cylindrical region of space with radius  ( )r R t=   at the time  t   containing neutral plasma which has 

expanded at  0t =   (with  0(0)R R=  ) to its present state from a cylindrical source with radius  R0   

located around  0r =  . We assume that at any time  t   the plasma cylinder is unbounded in  z   
direction (i.e. the plasma cylinder is located at  z−∞ < < ∞  ). To solve the boundary problem we 
introduce the cylindrical coordinate system ( r  ,  φ  ,  z  ) with the  z  -axis along the plasma 

cylinder symmetry axis and the azimuthal angle  φ   is counted from the plane ( xz  -plane) 

containing the vector of the unperturbed magnetic field  H0  . The angle  θ   between the vector  H0   

and the  z  -axis is arbitrary. 
As the cylindrical plasma expands, it both perturbs the external magnetic field and generates an 

electric field. We shall obtain an analytic solution of the electromagnetic field configuration. We 
consider the case of the purely radial expansion of the plasma cylinder with an arbitrary (but 
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nonrelativistic) expansion velocity  ( )R t  . Having in mind the symmetry of the unperturbed 

magnetic field and the fact that the electromagnetic fields do not depend on the coordinate  z   it is 
sufficient to choose the vector potential in the form  0rA =  ,  

0 0( , ) ( ), ( , )sin ,zH W r t rA A H r t
r φ φ⊥
∂= = Ψ
∂  

(6)

 
where  ( , )W r t   and  ( , )r tΨ   are some unknown functions. From symmetry considerations, the 

functions  ( , )W r t   and  ( , )r tΨ   are independent on the cylindrical coordinate  φ  . Here  0H ⊥   and  

0H    are the components of the unperturbed magnetic field  H0   transverse and parallel to the  z  -

axis, respectively. The components of the electromagnetic field are expressed by these functions as 

0 ( / )zH H W r=   ,                                     
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and  0rE =  . The equation for the vector potential  ( , )tA r   inside the plasma cylinder ( ( )r R t≤  ) 

is obtained from the MHD equation for the magnetic field diffusion, Eq.(5) , which for the unknown 
functions  ( , )r tΨ   and  ( , )W r t   yields a system of equations  
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Here  ( , ) [ ( ) / ( )]ru r t r R t R t=   . In the vacuum surrounding the plasma cylinder ( ( )r R t≥  ), the 

magnetic field is determined by the Maxwell equation  4
c
π× =H j∇   with  0=j   which for the 

functions  ( , )r tΨ   and  ( , )W r t   become  
2

2 2

1
0,

r r r r

∂ Ψ ∂Ψ Ψ+ − =
∂ ∂

 
(11)

2

2 2

1
0.

W W W

r r r r

∂ ∂− + =
∂ ∂

(12)

In the plasma, the magnetic field is the solution of the diffusion equation with a diffusion 
coefficient  2( ) / 4 ( )D t c tπσ=  . The plasma conductivity  ( )tσ   is essentially a function of plasma 
temperature alone. If it is assumed that the plasma temperature is uniform, this coefficient is a 
function only of time and Eqs. (9) - (12) may be solved by the method of separation of variables. 

The system of equations (9)-(12)  is to be solved in the internal ( ( )r R t≤  ) and external ( 
( )r R t≥  ) regions subject to the boundary and initial conditions. Since the plasma under 

consideration has finite electrical conductivity, there are no surface currents at the plasma-vacuum 
boundary and  H   must be continuous at the moving boundary. The continuity of the magnetic field  
H  requires that  ( , )r tΨ  ,  ( , )W r t   and the radial derivative  / r∂Ψ ∂   to be continuous at the 
expanding plasma surface. In addition, we require that as  r →∞  , the magnetic field  ( , , )r tφH   

being time-independent and asymptotically approach the uniform magnetic field  H0  . This is 
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equivalent to the boundary conditions  ( , ) ( , )r t W r t rΨ = =  at  r →∞  . 
The initial conditions are at  0t =  . In principle two distinct sets of initial conditions could be 

considered [11]. (i) In the case of the poorly conducting plasma the initial conditions are imposed 
for arbitrary  r  :  

( ,0) ( ,0) .r W r rΨ = = (13)
(ii) In the case of the perfectly conducting plasma the initial conditions are imposed separately for 
the domains inside ( 0r R≤   with  0 (0)R R=  ) and outside ( 0r R≥  ) the plasma cylinder [18]:  

0

2
0

0

( ,0) ( ,0) 0, ,

( ,0) , ( ,0) , .

r W r r R

R
r r W r r r R

r

Ψ = = ≤

Ψ = − = ≥
 

(14)

In the first case, Eq.(13) , the plasma is initially cold and poorly conducting so that the external 
magnetic field is completely penetrated inside the plasma. At the other extreme case (ii), the initial 
conditions (14)  imply that initially the plasma is highly conducting so that the magnetic field is 
completely excluded from the initial plasma volume. We consider below the initial value problem 
(ii). The extension of the obtained solution to the case (i) is straightforward. 

At ( )r R t≥  we look for the solutions of Eqs. (11) and (12) for the functions  ( , )r tΨ  and  ( , )W r t   

in the form  rα∼  , where  α   is some numerical constant. Therefore, taking into account the 
boundary condition at r →∞  the full solution in the domain outside the plasma cylinder is given by  

2
0( , ) ( ) ,

R
r t r C t

r
Ψ = −

(15)

1( , ) 1 ( ) ln ,
( )

r
W r t r C t

R t

 
= + 

 

(16)

where  ( )C t   and  1( )C t   are the arbitrary functions of time with the initial conditions  (0) 1C =   and  

1(0) 0C = . However, since the magnetic field should be finite at r →∞  we set  1( ) 0C t =  . At  

( )r R t≥   this gives the final solution  ( , )W r t r=   for the function  ( , )W r t  . 
For the class of separable solutions the motion is such that, for a given element of plasma, the 

quantity  / ( )r R tξ =   is a constant of the motion. Solutions of Eqs. (9) and (10)  inside the plasma 
cylinder (i.e. at  ( )r R t≤  ) are then facilitated by the representation of the functions  ( , )r tΨ   and  

( , )W r t   in the form  

1

( , ) ( ) ( ),n n n
n

r t r a T t ξ
∞

=

Ψ = + Φ  
(17)

1

1
( , ) ( ) ( ),

( ) n n n
n

W r t r b U t
R t

ξ
∞

=

= + Θ  
(18)

where ( )nT t , ( )n ξΦ , ( )nU t , and ( )n ξΘ  are some unknown functions, na  and nb  are the unknown 

expansion coefficients. Next, inserting these expansions into Eqs.  (9) and (10) for  ( )n ξΦ  and 

( )n ξΘ   one arrives at the ordinary differential equations for the cylindrical functions [25]. We 

choose only the regular solutions of the obtained equations finite at the origin  0r =  (or at 0ξ = ). 
Thus,  

1 0( ) ( ), ( ) ( ).n n n n n nA J B Jξ λ ξ ξ ξ κ ξΦ = Θ = (19)

 
Here nA  and nB  are the integration constants, nλ  and nκ  are some arbitrary parameters 

(depending only on  n  ), arising due to the separation of the variables, and 0J  and 1J  are the Bessel 

functions of the first kind. In the same way, for the time-dependent functions ( )nT t  and ( )nU t  we 

obtain the following set of the ordinary differential equations:  
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2( ) ( ) ( ) ( ),n n nT t t T t R tλ ϑ+ =   (20)
2( ) ( ) ( ) 2 ( ) ( ),n n nU t t U t R t R tκ ϑ+ =  (21)

where  

20
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R
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τ
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The general solutions of the first order differential equations  (20) and (21) can be represented in 
the form  
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Here  0 (0)nt T=   and  0 (0)nu U=   are the initial values of  ( )nT t   and  ( )nU t  , respectively, to be 

determined by imposing the initial conditions. In addition, it should be emphasized that the 
expansions given by Eqs. (9), (17) and (18) are the solutions of the system of Eqs. (9)  and (10) only 
if the functions  ( )n ξΦ   and  ( )n ξΘ   satisfy at arbitrary  0 1ξ≤ ≤   the equations  

1 1

( ) ( ) .n n n n
n n

a bξ ξ ξ
∞ ∞

= =

Φ = Θ = −   
(25)

These relations impose some additional constrains on the expansion coefficients  an   and  bn  . 
Now let us consider the boundary condition at  ( )r R t=   for the functions  ( , )W r t  ,  ( , )r tΨ  , 

and  ( , )r r t∂
∂ Ψ  . For the function  ( , )W r t   this boundary condition yields  0 ( ) 0nJ κ =  , i.e. the 

quantities  nκ   (with  1,2,...n =  ) must be the positive zeros of the Bessel function 0 ( )J z . Later on, 

we will assume that the zeros  nκ   are arranged in ascending order of magnitude. The same 

boundary condition for the quantity  ( , )r tΨ   determines the unknown function ( )C t  in Eq.(15) , 

12
10

( )
( ) ( ) ( ).n n n n

n

R t
C t a A T t J

R
λ

∞

=

= −   
(26)

Finally, the boundary condition at  ( )r R t=   for  ( , )r r t∂
∂ Ψ   yields another relation for the function  

( )C t   which should be consistent with Eq.(26) . This is only possible if  0 ( ) 0nJ λ =  , i.e.  n nλ κ=   

are also the zeros of the Bessel function. 
Let us now turn to the determination of the expansion coefficients  an   and  bn   using the 

constrains in Eq.(25) . Inserting Eq.(19)  into Eq.(25)  and using the summation formulas (56) and 
(54)  one can easily prove that the equations in Eq. (25) are satisfied if  2

14 / [ ( )]n n n na A Jλ λ= −  and  

12 / [ ( )]n n n nb B Jλ λ= −  . Then, taking into account the summation formulas (57) and (54) the initial 

conditions  (0) 1C =   and  ( ,0) 0W r =   (at  0r R≤  ) for the functions  ( )C t   and  ( , )W r t   imply that  

0(0)nT R=   and  2
0(0)nU R=  , respectively. Moreover, having in mind the relations (56) and (57)  

the initial conditions for the quantity  ( ,0)rΨ   inside ( 0r R≤  ) and outside ( 0r R≥  ) the plasma 

cylinder (see Eq.(14) ) are then satisfied automatically. 
Therefore, the complete solution of Eqs. (9) -(12) for the initial and boundary conditions inside ( 

( )r R t≤  ) and outside ( ( )r R t≥  ) the plasma cylinder, respectively, may be represented as  

1
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and  ( , )W r t r=  ,  
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Note that  ( , ) ( , )r t W r t rΨ = =   at  r →∞   as expected by the boundary conditions at the infinity. 

The  -component of the vector potential is determined by the first relation in Eq.(6) . The 
straightforward integrations in Eq.(28) with respect to the radial coordinate  r   result in [26]  
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inside ( ( )r R t≤  ) and outside ( ( )r R t≥  ) the plasma cylinder, respectively. Here  ( )G t   is an 
arbitrary function of time to be determined by the boundary condition at  ( )r R t=  . From this 
condition, one obtains ( ) 4 ( )G t t= U . Equations (27) - (32)  represent the complete solution of the 
problem and determine the structure of the electromagnetic fields both inside and outside the 
expanding plasma cylinder. Expressions for the components of the electromagnetic fields  E  and  
H  may now be obtained by use of Eqs. (7) and  (8). These components are, for  ( )r R t≤  ,  
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and, for  ( )r R t≥  ,  0zH H=   ,  
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 = − +  

T  
(39)

0

2
1

2
( ) ,n

n

H D
E RR U t

cr Rφ

∞

=

 = − 
 

   
(40)
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0

1

4
sin [ 4 ( )] ( ) .z n

n

H D
E R R t T t

cr R
φ

∞
⊥

=

 = + − 
 

 T
(41)

In the latter expressions for the components of the electric field the time-derivatives  ( )nU t   and  

( )nT t   have been excluded by means of Eqs. (20) and (21) . Also in Eqs. (33) -(41) the prime 

indicates the derivative of the Bessel function with respect to the argument. 
The induced current density  j  is defined only inside the plasma cylinder (i.e., for  ( )r R t≤  ) by 

the relation (3) (or using the Maxwell equation  4
c
π= ×j H∇  ) and has the following components:  

0rj =  , and  

0 1
3

1 1

( )
( ) ,

2 ( ) ( )
n

n
n n

cH J
j U t

R t Jφ
λ ξ

π λ

∞

=

= − 

 

(42)

0 1
2

1 1

( )
sin ( ) .

( ) ( )
n

z n
n n

cH J
j T t

R t J

λ ξφ
π λ

∞
⊥

=

= − 
(43)

Until now, we have considered the initial value problem (ii) assuming that initially the plasma 
conductivity is so high that the magnetic field is completely excluded from the initial volume of 
plasma. The extension of the obtained solution to the case of the initial value problem (i) (with 
highly resistive plasma at  0t =  ) is straightforward. From the consideration above it follows that 
the solution of the boundary and initial value problem (i) is again determined by Eqs. (27)-(43), 
where, however, the initial conditions  0(0)nT R=   and  2

0(0)nU R=   for the functions  ( )nT t   and  

( )nU t   (see Eqs.(23) and (24)) should be replaced by the zero initial conditions,  (0) (0) 0n nT U= =  . 

Comparison of the complete solutions obtained by the initial value problems (i) and (ii) shows that 
the electromagnetic fields and the induced current for the two distinct cases differ only in the terms 
containing  (0)nT   and  (0)nU   in Eqs. (23) and (24) . These terms force the matching of the 

solution to the initial condition of the magnetic field completely excluded initially from the plasma 
volume  0r R≤  . Because of their exponential dependence on  ( )tϑ   (and hence on the time  t  ) 

these terms become negligible compared to the other terms in the electromagnetic fields in the time 
required for  ( )tϑ   to become of the order  ( ) 1tϑ ∼  . This time interval is the characteristic time for 

diffusion of the magnetic field into a stationary plasma of radius  R  and conductivity  σ  , i.e.  
2 2 2/ 4 /R D R cτ πσ=D  . Thus, the initial conditions for the initially perfectly conducting plasma 

are forgotten by the plasma at  t τ≥ D  . 

In the context of the two distinct initial value problems (i) and (ii) it should be also emphasized 
that the initial value of the plasma conductivity  (0)σ   should be consistent with the chosen 
physical model. Indeed, the cases (i) and (ii) imply vanishing ( (0) 0σ →  ) and very large 
( (0)σ →∞  ) initial conductivities of the expanding plasma, respectively. As a demonstration of the 
importance of the initial value  (0)σ   consider, for instance, Eqs.(36), (37),  (40)  and (41)  for the 
generated electric field. Using Eqs. (20) and (21) as well as the summation formulas of Appendix 
sec: app1 it is straightforward to show that at  0t =   the electric field inside (Eqs. (36) and (37)) the 
plasma cylinder is given by  

0 0 0
2

0 0

(0) 1 ,
H R u

E r
c R Rφ

 
= − 

 

  (44)

0 0 0

0 0

(0) sin 1 ,z

H R t
E r

c R R
φ⊥  

= − 
 

 (44)

where  0 (0)R R=   . Thus, the initial electric field in the plasma volume vanishes or is finite in the 

cases (ii) (with  2
0 0u R=  ,  0 0t R=  ) and (i) (with  0 0 0u t= =  ), respectively. The initial electric field 
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in a vacuum is determined by Eqs. (40) and (41) at  0t =  . It is seen that at  0t →   the last terms in 
these expressions proportional to the diffusion coefficient  ( )D t   vanish for the initial condition (i) 

while diverging as  1/2[ ( )]tϑ −∼   in the case (ii). In the latter case assuming, however, perfectly 
conducting (in fact infinitely conducting) plasma at  0t =   one must consider the limit  (0) 0D →   
in the last terms of Eqs. (40) and (41) which vanish eventually at  0t →  . Finally, we note that at  

0t →   the nonvanishing terms in Eqs.(40) , (41), (44)  and (45)  are proportional to the initial 
expansion velocity  0R   of the plasma. Therefore, it is not surprising that at  0 0R ≠   the plasma 

expansion builds up instantly an initial electric field, although the induced magnetic field is zero. 
At the end of this section, consider briefly the nondiffusive limit of the obtained solutions, 

Eqs.(33) - (43), when the diffusion coefficient vanishes,  0D → . This limit can be obtained using 
at  0D →   the expressions (22) - (24) which yield  ( ) ( )nT t R t=   and  2( ) ( )nU t R t=  . Therefore, 

having in mind the summation formula (57)  from Eq. (30) one finds  ( ) ( ) / 4t R t=T   and  
2( ) ( ) / 4t R t=U  . Using these results and the summation formulas derived in Appendix sec: app1 it 

is straightforward to show that  0zj jφ = =   and the electromagnetic fields are, for  ( )r R t≤  ,  

( , ) ( , ) 0t t= =H r E r  , and, for  ( )r R t≥  ,  0zH H=   ,  2 2
0 cos (1 / )rH H R rφ⊥= −  ,  

2 2
0 sin (1 / )H H R rφ φ⊥= − +  ,  0 ( / )E H R rφ β=   ,  02 ( / )sinzE H R rβ φ⊥=  , where  /R cβ =   . 

These expressions have been derived previously in Ref. [18] for the cylindrical plasma expansion 
neglecting the diffusion of the magnetic field. 

 
4. Energy balance 

Previously significant attention has been paid [4,5,14-18] to the question of what fraction of 
energy is emitted and lost in the form of electromagnetic pulse propagating outward of the 
expanding plasma. In this section, we consider the energy balance during the plasma cylinder 
expansion in the presence of the homogeneous magnetic field. 
Our starting point is the energy balance equation  

2

,
8

H

t π
∂⋅ = − ⋅ −
∂

S j E∇
(45)

where  4 [ ]c
π= ×S E H   is the Poynting vector and  j  is the induced current. Note that the density of 

the electric field energy has been neglected in Eq (45)  since  R c    and  E H  . The energy 
emitted to infinity is measured as a Poynting vector integrated over time and over the lateral surface  
Sc   of the cylinder with radius  rc  , length  lc   and the volume  cΩ   (control cylinder) enclosing the 

plasma cylinder ( ( )cr R t>  ). Integrating over time and over the volume  cΩ ,  Eq. (45) can be 

represented as  
( ) ( ) ( ),W t W t W t= + ΔS J M

(46)

where  
2

0 0

0

( ) ,

1
( ) .

c

t

c r

t

c

W t r dt S d

W t dt d
l

π
φ

Ω

′=

′= − ⋅

 

  j E r

S

J

(47)

Here  Sr   is the radial component of the Poynting vector. Note that the total flux of the energy 
over the bases of the control cylinder determined by  Sz   vanishes due to the symmetry reason.  

( )W tM   and  ( ) (0) ( )W t W W tΔ = −M M M   are the total magnetic energy and its change (with minus 

sign) per unit length in a volume  cΩ , respectively.  ( )W tJ   is the energy (per unit length) 

transferred from plasma cylinder to the magnetic field and is the mechanical work with minus sign 
performed by the plasma on the external magnetic pressure. At  0t =   the magnetic fields are given 
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by  0=H H   in the model (i) and by Eq.(14) in the model (ii). Hence in (i)  (0)WM   is the total 

magnetic energy per unit length in a volume  cΩ   and is given by  2 2
0(0) ( / 8 )c cW Q r Hπ π≡ =M   

while in (ii)  WM   is the total magnetic energy in a volume  c
′Ω   of the control cylinder excluding 

the volume of the plasma cylinder (we take into account that  0=H   at  0t =   in a plasma cylinder 
in the model (ii)) and  2 2 4 2(0) (1 cos sin )cW Q κ θ κ θ− −= − −M  . Here  0/cr Rκ =   and  θ   is the angle 

between  H0   and the symmetry axis of the plasma cylinder ( z -axis). Then the change of the 
magnetic energy  ( )W tΔ M   in a volume  cΩ   can be evaluated as  

21
( ) (0) .

8c
c

H
W t W d

l πΩ
Δ = −  rM M  

(48)

Hence the total energy flux  ( )W tS  given by Eq.(47)  is calculated as a sum of the energy loss by 

plasma due to the external magnetic pressure and the decrease of the magnetic energy in a control 
volume  cΩ  . For expansion of a one-dimensional plasma slab and for uniform external magnetic 

field  2 2W W WΔ S J M  , i.e. approximately the half of the outgoing energy is gained from the 

plasma, while the other half is gained from the magnetic energy [15]. In the case of expansion of 
highly conducting spherical plasma with radius  R  in the uniform magnetic field  H0   the outgoing 
energy  WS   is distributed between  WJ   and  WΔ M   according to  01.5W Q=J   and  00.5W QΔ =M   

with  02W Q=S  , where  2 3
0 0 / 6Q H R=   is the magnetic energy escaped from the spherical plasma 

volume [14]. Therefore, in this case the released magnetic energy is mainly gained from the plasma. 
Consider now each energy component  ( )W tS  ,  ( )W tJ   and  ( )W tΔ M   separately.  ( )W tS   is 

calculated from Eq.(47)  using the expressions for the electromagnetic fields generated outside the 
plasma ( ( )r R t≥  ). Recalling that  0zH H=    at  ( )r R t≥   from Eqs. (39)-(41) and (47) we obtain  

[2 20
0 0

22
2 0 0

02 2 2
0

( ) ( ) ( ) ( )
4

2 ( )
( ) .

4 8

u
W t H t H R t t

t tR t
t R

R κ κ

⊥
 = − +  


+ − − 



S U T

T

 

(49)

Here  ( )tT   and  ( )tU   are given by Eq.(30) . 

Next, we evaluate the energy loss  ( )W tJ   by the plasma which is determined by the induced 

current density  j . This current has two azimuthal and axial components and has been determined 
in Sec.3, see Eqs. (42) and (43). Since the current is localized only within a plasma volume  ΩR  , in 

Eq.(47)  the volume  cΩ   can be replaced by the plasma volume  ΩR  . The total energy loss by the 

plasma cylinder is calculated as  
2 2 2
0 20 0

02 2
0

( )
( ) ( ) ,

2 ( ) 4 4

H u tt
W t H t

R t R ⊥

   
= − + ℑ −   

  
 A

J

(50)

where  

2 2
2 2

1 1

1 1
( ) ( ), ( ) ( ).n n

n nn n

t T t t U t
λ λ

∞ ∞

= =

ℑ = = A  
(51) 

The change of the magnetic energy in a control cylinder is calculated from Eq.(48) . For 
evaluation of the magnetic energy inside and outside the plasma volume, we use Eqs.(33)-(35), (38)  
and (39) ,  together with  0zH H=   , respectively. Thus, the change of the total magnetic energy in 

the control cylinder is represented as  
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( )
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0 0 0

2 2
0

2
2 2
0 2 2

0

0 0
0 02

( )
( ) 2 ( ) 2

2 ( ) 4

( )
( ) ( ) ( ) 2 ( )
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W t t

R t R

R t
H R t t t t

R

t t
R t

κ

κ

⊥

  
Δ = − − −  

  


+ −ℑ +


 − + −   

 A
M U

T T  

(52)

Comparing now Eqs. (49),(50)  and (52) we conclude that  ( ) ( ) ( )W t W t W tΔ + =M J S   as predicted 

by the energy balance equation (46). Let us recall that Eqs. (49), (50) and (52) are valid for both 
initial conditions (i) and (ii) choosing appropriate values for the quantities  t0   and  u0   (i.e.,  

0 0 0t u= =   in (i) and  0 0t R=  ,  2
0 0u R=   in (ii)). 

The energy components  ( )W tS   and  ( )W tΔ M   depend naturally on the radius  rc   of the control 

cylinder while  ( )W tJ   is determined only by the volume of the plasma cylinder. At  cr →∞ ,  Eqs. 

(49) and (52) are finite and in this case  ( )W tS   represents the electromagnetic energy emitted to 

infinity. It should be noted that at  r →∞   the induced magnetic and electric fields behave as  
2H r −   and  1E r−∼  , respectively, see Eqs. (38)-(41). Consequently, at  cr →∞   the induced 

magnetic field does not contribute to the energy flux  ( )W tS   and the latter is determined by the 

electric field and the unperturbed magnetic field  H0  . 

 
5. Numerical examples 

In this section using theoretical findings of the preceding sections, we present the results of our 
model calculations for the electromagnetic fields generated due to the radial expansion of the 
magnetized cylindrical plasma into a vacuum. As an example we consider the radial expansion with  

{ }0( ) 1 [1 cos( )]R t R a tω= + −  , where  v   is the expansion velocity at  t →∞ , 0 0/a D vR=  . Note 

that initially  0 0R =   in this case. The electrical conductivity is modeled by  0( ) ( / )t tσ σ τ=  , where  

  is some characteristic decay time of  ( )tσ   and  0σ   is a constant. Accordingly, the diffusion 

coefficient is given by  0( ) ( / )D t D t τ=   with  2
0 0/ 4D c πσ=  . Thus, initially the conductivity of the 

plasma is very high which corresponds to the initial condition (ii). However, as plasma expands the 
plasma will be eventually cooled off and the conductivity decreases with time. For the chosen 
model  

/2

2 2 20
0

2
20

2
( )

(1 2 sin )

1 sin( ) 2(1 )
arctan( 1 2 tan )

1 2 21 21 2 sin
2

tD d
t

R a

D a t a t
a

tR a aa

ω τϑ
ω τ

ω ω
ωω

=
+

 
 += + + + + +
 



 

as it follows from Eq.(22) . In order to obtain a physical idea of the length and time scales involved, 
let us consider briefly a numerical example. Taking, for instance,  0 1R =   mm and  610v =   cm/s, 

one obtains  0 / 0.1R vτ = =R    μ s. For a laser generated plasma with a temperature  510T ∼   K, 

one can take  14
0 5 10σ ×   s 1−   and  5

0 2 10D ×   cm 2 /s. Using these parameters the 

dimensionless diffusion coefficient  1δ =   implies the characteristic decay time  0.18τ     μ s for 
the conductivity. Using it all in equations (23) and (24) we have some numerical results (see Fig. 1).  

We consider the temporal and spatial distributions of the magnetic field for various values of θ  , 
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a  and δ  . Figure 1 demonstrates the absolute values of the magnetic field  ( , )H r t   (in units of  H0  
) on the symmetry axis of the plasma cylinder,  0r =  , as a function of time. As it follows from Eqs. 
(33)-(37), the electric field vanishes on this axis,  0=E  , while  0 1( ) cosrH H t φ⊥= F  ,  

0 1( ) sinH H tφ φ⊥= − F  ,  0 2 ( )zH H t= F  , where  

1
1 1

( )2
( ) 1 ,

( ) ( )
n

n n n

T t
t

R t Jλ λ

∞

=

= − F  
      (53) 

 
2 2

1 1

( )2
( ) 1 .

( ) ( )
n

n n n

U t
t

R t Jλ λ

∞

=

= − F
 (54)

Fig. 1. The strength of the magnetic field (in u 

nits of 0H ) at 0r = as a function 

of time t (in units of Rτ ) for 0θ = , / 4θ π= , / 2θ π= , 

0.1δ = , 0.5δ = , 1.0δ = , 1.2a = , 3.0a =  and 5.0a = . 

 
Thus, as expected, the magnetic field  ( , )H r t   at  0r =   is independent on the angle  φ  . From 

Fig. 1 it is seen that simultaneously with the plasma expansion the magnetic field inside grows 
harmonically from zero value and saturates typically at  2 1

0 0/t R D δ −∼sat  . Clearly, the saturation 

time of the magnetic field decreases with  δ . At  t t> sat   the magnetic field is constant harmonic 

because it is completely diffused into the expanding plasma remaining, however, smaller than  H0 . 
It is also noteworthy the influence of the orientation of  H0   on the magnetic field inside the plasma 
cylinder at  0r =  . At weak diffusion,  1δ   , the quantities  1( )tF   and  2 ( )tF   are evaluated using 

Eq. (58) with 0x =   and  1/2z δ −=  . In this case we obtain  2 1/4
1( ) (4 / ) exp( 1/ )t π δ δ−F   and  
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2 1/4
2 ( ) (8 / ) exp( 2 / )t π δ δ−F  . It is seen that  1 2( ) ( )t tF F   and the magnetic field is essentially 

larger for the transverse orientation of  H0   (Fig. 1 (Row 1)). However, in the strongly diffusive 
regime,  1δ   , from Eqs. (54) and (55) one derives  1( ) 1 1/ 4t δ−F   and  2 ( ) 1 1/ 2t δ−F  , and 

the magnetic field is only weakly sensitive to  θ   approaching the value  H0   of the unperturbed 
magnetic field (Fig. 1(Row 3)). 

 
6. Conclusion 

In this paper, an exact solution of the purely radial expansion of a neutral, resistive plasma 
cylinder in the external static uniform magnetic field has been obtained. The electromagnetic fields 
are derived by using the appropriate initial and boundary conditions. Two type of the initial 
conditions have been considered assuming poorly or perfectly conducting plasma at the initial state. 
In the first case, the magnetic field is completely penetrated inside the plasma while in the other 
extreme case the magnetic field is completely excluded from the initial plasma volume. However, 
as expected both solutions “forget” the imposed initial conditions at  t τ≥ D  , where  τ D   is the 

characteristic diffusion time. Using a simple model for the electrical conductivity, we have also 
studied the energy balance during the plasma expansion as well as the spatio-temporal distribution 
of the external magnetic field with an arbitrary orientation of the initial field. In contrast to the 
previous treatments with highly conducting plasmas [13-18], our model calculations demonstrate 
some new features arising due to the finite conductivity of the expanding plasma.  

Going beyond the present model, which is based on several approximations, we can envisage a 
number of improvements. We have assumed the purely radial expansion (with a given velocity  

( )R t  of the plasma boundary) and hence the shape of the plasma (in the xy  -plane) remains 
isotropic during plasma expansion. For realistic laser-generated plasmas this is valid when the 
kinetic energy density of the expanding plasma much exceeds the magnetic field energy density 
[1,2]. However, after some period of accelerated motion, the plasma gets decelerated as a result of 
the external Lorentz force acting inward and the above mentioned condition may be violated at the 
later stages ( t τ D  ) of the expansion. In this case the Lorentz force density which is anisotropic in 

general, cannot be neglected in Eq. (1) . Thus one can expect some deformation of the initially 
isotropic plasma surface [4,5] and the plasma radius  ( , )R t φ   should be treated as a function of  φ  . 
On the other hand, in this regime the plasma radius  ( , )R t φ   cannot be treated as a given function of 
time and should be determined self-consistently using, for instance, the equation of balance of 
plasma ( 2Rρ∼  ) and magnetic field ( 2H∼ ) energies [19]. Thus, plasma dynamics can be described 
(at least qualitatively) inserting Eqs.(33)-(35), (38) and (39) into the energy balance equation which 
yields a first-order differential equation for ( , )R t φ . Within the scope of this analysis, the 
deformation of the plasma surface as well as the initial stage of plasma acceleration, the later stage 
of deceleration and the process of stopping at the point of maximum expansion could be examined 
numerically. We intend to address these issues in our forthcoming investigations. 

 
7. Some summation formulas involving the Bessel functions 

Using the Fourier-Bessel expansion of an arbitrary function of a real variable [25] one can derive 
some summation formulas involving the Bessel functions, which are used in the main text of the 
paper. The first relation is obtained by considering the Fourier-Bessel series for the quadratic 
function  x 2   in the interval  0 1x≤ <  ,  
 

2 0
2

1 1

2 ( )4
1 ,

( )
n

n n n n

J x
x

J

λ
λ λ λ

∞

=

 
= − 

 
  

(53)

where  nλ   (with  1,2,...n =  ) are the positive zeros of the Bessel function,  0 ( ) 0nJ λ =  , arranged in 

ascending order of magnitude [25]. On the other hand using the known summation formula [25] 
(valid at  0 1x≤ <  )  
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one can represent Eq.(53) in another form:  
 2

0
3

1 1

( ) 1
.

( ) 8
n

n n n

J x x

J

λ
λ λ

∞

=

−=  
(55)

This latter relation is valid at  0 1x≤ ≤  . 

Next, taking the  x  -derivatives of Eqs. (53) and (54) one obtains  
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1 11 1
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n n

n nn n n

J x J x
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J J

λ λ
λ λ λ

∞ ∞
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 
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     (59)

respectively. The latter formula is valid at  0 1x≤ <  . Therefore, using the second relation in 
Eq.(55)  the first summation formula in (55)  can be represented in the form:  
 

1
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1 1

( )
.

( ) 4
n

n n n

J x x

J

λ
λ λ

∞

=

=
(56)

Finally, substituting  1x =   in Eq. (56) we arrive at  
 

2
1

1 1
.

4n nλ

∞

=

=  
(57)

Next, we derive another kind of summation formulas involving the zeros of the Bessel function  

0 ( )J z  . For that purpose consider the known summation formula [25]  

( )
0 0

2 2
10 1

( ) ( )
2 ,

( ) ( )
n n

n n n

I xz J x

I z z J

λ λ
λ λ

∞

=

=
+  

(58)

where  ( )nI z   (with  1,2,...n =  ) is the modified Bessel function of the first kind,  z   and  x   (with  

0 1x≤ <  ) are real variables. Differentiating Eq.(58) with respect to x  and using the second relation 
in Eq. (59) we arrive at  

( )
11

2 2
10 1

( )( )

2 ( ) ( )
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n n n

J xI xz

zI z z J

λ
λ λ
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=
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(59)

which, in particular, at  1x =   yields  

1
2 2

1 0

( )1
.

2 ( )n n

I z

z zI zλ

∞

=

=
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(60)

This relation can be used for deriving other summation formulas. For instance, after some 
manipulations one obtains  
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I I

I I

λ λ

ζ ζ
ζ ζ ζ

∞

=

Ξ =
+

 
= − −  

 


 

(62)

 
Here  1 / zζ =  . We also mention the asymptotic behavior of the functions  1( )zΞ   and  2 ( )zΞ  . 

At small argument, 1z  , these functions behave as  1 2( ) ( ) 1z zΞ Ξ    while at  1z  they decay 

as  1( ) 1/ 8z zΞ   ,  2
2 ( ) 1 / 48z zΞ  .  
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