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Abstract. Frequency-chirped systems have attracted widely attentions in both experiments and 
theory that is motivated by both testing of quantum optics theory and engineering new devices. In 
this report, we propose to use the frequency-chirped excitations for realizing effective mechanism of 
Photon Blockade.  
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1. Introduction 
Resonators consisting Kerr-nonlinear element under continuous or pulse driving are widely used for 
precision measurement [1], modeling nonlinear phenomena [2] and generation of non-classical states 
of light. In recent years, frequency-chirped systems have attracted widely attentions in both 
experiments and theory that is motivated by testing fundamental quantum optics theory and for the 
purposes of developing devices. In this paper, we investigate Kerr-nonlinear resonator in regime of 
continuous-wave driving with chirped frequency on the base of the master equation in complete 
quantum analysis of autoresonant transitions in presence of dissipation. This approach allows to 
consider control of production of photon-number states and enhancing of photon blockade by 
self-adjusting the drive frequency of resonator. Particularly, the capture of a single photon into the 
system affects the probability that a second photon is admitted. A simple consequence of photon 
blockade is the antibunching of photons in emission in analogy to the photon antibunching of 
resonance fluorescence on a two-level [3,4]. Photon blockade was first observed in an optical cavity 
coupled to a single trapped atom [5]. The PB has been predicted in cavity quantum electrodynamics 
(QED) [6], and recently in circuit QED with a single superconducting artificial atom coupled to a 
microwave transmission line resonator [7,8]. PB was also experimentally demonstrated with a 
photonic crystal cavity with a strongly coupled quantum dots [9], and was also predicted in quantum 
optomechanical systems [10,11]. An analogous phenomenon of phonon blockade was predicted for 
an artificial superconducting atom coupled to a nanomechanical resonator [12], as well as the 
polariton blockade effect due to polariton-polariton interactions has been considered in [13]. 
Recently, PB was considered in dispersive qubit-field interactions in a superconductive coplanar 
waveguide cavity [14] and with time-modulated input [15]. We clarify the chirp effects in Kerr 
nonlinear resonator by considering photon-number effects and by analyzing phase-space properties 
of resonator mode. Thus, we focus on analysis of the mean photon number, the probability 
distributions of photons, the Wigner functions in phase space. 
 
2. Model description  
The Kerr nonlinear resonator under CW field and interacting with a reservoir is described by the 
following Hamiltonian ܪ = ℏ߱଴ܽାܽ + ℏ߯(ܽା)ଶܽଶ + ℏߗ(ܽ݁ି௜ఠ௧ + ܽା݁௜ఠ௧),              (1) 

where ܽା, ܽ are the oscillatory creation and annihilation operators, is the oscillatory frequency, ߱ is 
a frequency of driving field and ߯ is the nonlinearity strength. We consider that field frequency is 
chirped so it is varying over a time linearly ߱(ݐ) = ߱ + αt. Considering chirped field and applying 
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rotating wave approximation on Hamiltonian we will have the following Hamiltonian  ܪ = ℏ(߂ − αt)ܽାܽ + ߯(ܽା)ଶܽଶ + ାܽ)ߗ + ܽ),                   (2) 
where ߂ = ߱଴ − ߱ and ߙ is the chirp rate. 
This model seems experimentally feasible and can be realized in several physical systems. 
Particularly, the effective Hamiltonian (2) describes a qubit off-resonantly coupled to a driven cavity. 
In fact, it is well known that the Hamiltonian of two-level atom interacting with cavity mode in the 
dispersive approximation, if the two-level system remains in its ground state, can be reduced to the 
effective Hamiltonian. This model also describes a nanomechanical oscillator with ܽା and ܽ raising 
and lowering operators related to the position and momentum operators of a mode quantum motion. 
An important implementation of Kerr-type resonator has been recently achieved in the context of 
superconducting devices based on the nonlinearity of the Josephson junction. We have included 
dissipation and decoherence in Kerr nonlinear resonator on the basis of the master equation: ௗఘௗ௧ = − ௜ℏ ሾܪ, ሿߩ + ∑ ቀܮ௜ܮߩ௜ற − ଵଶ ߩ௜ܮ௜றܮ − ଵଶ ௜ቁ௜ୀଵ,ଶܮ௜றܮߩ ,                           (3) 

  
where ܮଵ = ඥ(ܰ + ଶܮ and ܽߛ(1 = ඥܰܽߛାare the Lindblad operators, ߛ is a dissipation rate, and ܰ denotes the meannumber of quanta of a heat bath.  
To study the pure quantum effects, we focus on the cases of very low reservoir temperatures, which, 
however, ought to be still larger than the characteristic temperature ܶ ≫ ௖ܶ௥ = ߛ ݇஻⁄ .  This 
restriction implies that dissipative effects can be described self-consistently in the frame of the 
Linblad equation. In our numerical calculation we choose the mean number of reservoir photons 
N=0.  
We solve the master equation Eq. (3) numerically based on quantum state diffusion method. The 
application of this method for studies of NDO can be found in [16-19]. In the calculations, a finite 
basis of number states |݊〉 is kept large enough so that the highest energy states are never populated 
appreciably. Solving the equation (3), we calculate the distribution of oscillatory excitation states ܲ(݊) = ௡௠ߩ as well as the Wigner functionsin terms of the matrix elements 〈݊|ߩ|݊〉 =  of 〈݉|ߩ|݊〉
the density operator in the Fock state representation.  
 
3. Results 
In a classical inharmonic oscillator, the energy expectation can be deterministically increases to large 
values if the driving force is frequency-chirped and its amplitude is sufficiently large. This 
phenomenon is commonly known as autoresonance. It leads to excitation and control of nonlinear 
oscillatory systems by a continuous self-adjustment of systems’ parameters to maintain the resonance 
with frequency-chirped drive. In semi-classical approach for the case of a stronger drive amplitude 
the response of the nonlinear resonator changes dramatically. If the chirp passes through oscillatory 
frequency, beyond the threshold the resonator phase becomes locked and the mode amplitude grows 

Fig. 1. Time-dependent populations for the following parameters:(ܽ) ߯ ⁄ߛ = 10, ߂ ⁄ߛ = 40 ߗ ⁄ߛ =20, ߙ ⁄ଶߛ = 0 and (b) ߯ ⁄ߛ = 10, ߂ ⁄ߛ = 40, ߗ ⁄ߛ = 20, ߙ ⁄ଶߛ = 16.  
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with time. In general, autoresonance phenomenon has been observed in many fields of physics, for 
atomic and molecular systems, nonlinear optics, hydrodynamics, nonlinear waves and quantum 
wells. In a quantum inharmonic oscillator, the expected time evolution under a similar drive is 
sequential excitation of single energy levels of the system, or “quantum ladder climbing”. We 
discussed ladder climbing effect for frequency chirped excitation in presence of decoherence and 
dissipation.  

In Fig. 1 we have demonstrated populations of photon-number states, in plot (a) there is only CW 
field where we can see that maximum population values are for vacuum state 0.8 and single photon 
state 0.2, population of higher photon-number states are equal to 0. To be able to generate high 

population values for multiphoton states we use frequency-chirped field with high chirp rate and high 
amplitude. Results for frequency-chirped field are illustrated in Fig 1 (b). Existence of chirp field 
results sequential excitation of system up to |7〉 photon number state. Population maximum values 
for each photon state are equally shifted from each other and values are monotonically decreasing by 
the increase of photon-number state, particularly 0.5 for |1〉 photon state, 0.42 for |2〉 photon state 
and 0.2 for |7〉 photon number state. We also discussed system behavior in case of lower amplitude 
and lower chirp rate. This destructs ladder climbing behavior of the system and makes population 
value peaked in time range Fig 2 (b). In general, from the analytic results and numerical analysis we 
conclude that in our system under CW field populations are strongly limited [20]. 

Fig. 2 (a) illustrates that population of |1〉 state in steady state regime is saturated near 0.5, but in 

Fig. 2. Time-dependent populations for the following parameters:(ܽ)߯ ⁄ߛ = 10, ߂ ⁄ߛ = 1.2, ߗ ⁄ߛ = 2.7, ߙ ⁄ଶߛ =0and (b)߯ ⁄ߛ = 10, ߂ ⁄ߛ = 1.2, ߗ ⁄ߛ = 2.7, ߙ ⁄ଶߛ = 6. 

Fig. 3. Wigner function of pure |1〉 state (a), and (b) Wigner function for the time corresponding to 
the maximal population of |1〉 state. Parameters are same as for Fig. 2 (b). 
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the Fig 2(b) we can see increase of population of |1〉 state up to 0.75. We have also calculated 
Wigner function for the time corresponding to the maximal population of |1〉 state and compared this 
with Wigner function of pure |1〉 state to show visual pureness of the state. Having high population 
for |1〉 state means that we have a same probability of single photon blockade effect, which means 
that the generation of two or higher photon number states are blocked.  
 
4. Conclusion  
Thus, we have demonstrated mechanism of quantum ladder climbing effect in presence of dissipation 
and decoherence. We have reached high population values for high photon number states in ladder 
climbing mode. We have also demonstrated that of frequency-chirped fieldgains the single photon 
blockade efficiency by 30% breaking the limit of the CW field. 
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