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Abstract. We present a conditionally integrable level-crossing model 
for the quantum time-dependent two-state problem involving 
irreversible losses from the second level. The model is given by an 
exponentially varying Rabi frequency and a level-crossing detuning 
that starts from the exact resonance and exponentially diverges at the 
infinity. The model includes irreversible losses from the second level, 
while the spontaneous relaxation to the first level is neglected. We 
derive the exact solution of the two-level problem for this and discuss 
the dynamics of levels' populations under different regimes of the 
interaction. 
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1. Introduction 
 The interaction of real quantum systems with radiation is often approximated by the 
quantum two-state problem [1-17]. This is a useful approximation which implies that two of 
system's levels are resonant or nearly resonant with the external driving field, while the remaining 
levels are far off resonance. 
 In the present paper we discuss an analytic model of the two-state problem that involves 
losses from the upper level. The field configuration we consider is given by an exponentially 
varying Rabi frequency and a level-crossing detuning that starts from the exact resonance and 
exponentially diverges at the infinity. This model belongs to the bi-confluent Heun class [18,19]. It 
is a conditionally integrable model in that sense that the amplitude-modulation and detuning-
modulation functions, which compose the field configuration, do not vary independently. Applying 
transformations of both dependent and independent variables, we reduce the time-dependent 
Schrödinger equations for the two-level system under consideration to the bi-confluent Heun 
equation which is a second-order ordinary linear differential equation widely encountered in many 
branches of contemporary physics [20,21]. 
 Further, following the approach of [22,23], we construct the solution of the bi-confluent 
Heun equation as a series in terms of the Hermite functions [24,25]. We note that these functions 
have an alternative representation through the Kummer or Tricomi confluent hypergeometric 
functions. The coefficients of the expansion obey a three-term recurrence relation between 
successive coefficients. We derive the conditions for both right- and left-hand side termination of 
the derived series and show that the solution for the particular dissipative that we treat is written as 
a linear combination of two Hermite functions of a scaled and shifted argument. In general, these 
are Hermite functions of non-integer order so that they do not reduce to polynomials. 
 Finally, using the derived solution, we discuss the population dynamics of a dissipative two-
state quantum system subject to the optical excitation by a field of the mentioned field 
configuration. Owing to the explicit analytic form of the solution, we treat both weak and strong 
interaction regimes.  
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2. Reduction of the two-state problem to the bi-confluent Heun equation  
 We consider the semi-classical time-dependent two-state problem with a decaying upper 
level. Let the probability amplitudes of the ground and excited states be 1( )a t  and 2 ( )b t , 

respectively. If the decay of the excited state is supposed to be to a third state, the equations for the 
probability amplitudes read [15] 

  1
2( )

da
i U t b

dt
= ,   ( )2

1 2( ) ( )t
db

i U t a t i b
dt

δ= + − Γ , (1) 

where the Rabi frequency ( )U t  and the frequency modulation function ( )tδ  (the derivative of this 

function ( )t tδ  is the detuning of the transition frequency from the field frequency) are arbitrary real 

functions of time, and the parameter Γ  defines the rate of the losses from the upper level. 

 By change of the variable ( )
2 2 ( ) i tb a t e δ−=  and further elimination of 1a , system (1) is 

reduced to the following second-order linear differential equation for 2 ( )a t : 

  2
2 2 2 0t
tt t t

U
a i a U a

U
δ + − − + = 

 
,   t t iδ δ= − Γ , (2) 

where (and hereafter) the lowercase alphabetical index denotes differentiation with respect to the 
corresponding variable. According to the class property of the integrable models of the two-state 
problem [26,27], if the function *

2 ( )a z  is a solution of this equation rewritten for an auxiliary 

argument z  for some functions *( )U z , *( )zδ  then the function *
2 2( ) ( ( ))a t a z t=  is the solution of 

equation (2) for the field configuration defined as 

  *( ) ( )
dz

U t U z
dt

= ,   *( ) ( )t z
dz

t z
dt

δ δ=   (3) 

for arbitrary complex-valued transformation function ( )z t . The pair of functions *( )U z  and *( )zδ  
is referred to as a basic integrable model. 
 Transformation of variables 2 ( ) ( )a z u zϕ= , ( )z z t=  together with (3) reduces equation (2) 

to the following equation for the new dependent variable ( )u z : 

  
* *

* * *2
* *

2 0z z zz z z
zz z z z

U U
u i u i U u

U U

ϕ ϕ ϕδ δ
ϕ ϕ ϕ

    
+ − − + + − − + =         

 ,  (4) 

This equation is the bi-confluent Heun equation 

  0zz z
z q

u z u u
z z

γ αδ ε − + + + + = 
 

, (5) 

if  
*

*
*

2 z z
z

U
z i

z U

ϕγ δ ε δ
ϕ

+ + = − −  (6) 

and  
*

* *2
*

zz z z
z

Uz q
i U

z U

ϕ ϕα δ
ϕ ϕ

 − = + − − + 
 

. (7) 

Equations (6) and (7) compose an under determined system of two nonlinear equations for three 

unknown functions, *( )U z , *( )zδ  and ( )zϕ . The general solution of this system is not known. 
However, many particular solutions can be found starting from specific forms of the involved 
functions. We here present the known solutions following the approach of [18,19]. 
 Searching for the solutions of equations (6), (7) in the following form:  

   
2

0 21 /2z zz eα ααϕ += , (8) 

  * *
0

kU U z= , (9) 
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  * 1
0 2z z

z

δδ δ δ= + + , (10) 

leads to 5 possible cases of integer or half-integer k , obeying the inequalities 0 2 2 4k≤ + ≤  
[18,19]. Hence, according to equations (3), the actual field configuration is given as 

  *
0( ) k dz

U t U z
dt

= , (11) 

  1
0 2( )t

dz
t z

z dt

δδ δ δ = + + 
 

 (12) 

with 1, 1/ 2,0,1/ 2,1k = − −  [18]. The parameters *
0U  and 0,1,2δ  are complex constants which should 

be chosen so that the functions ( )U t  and ( )tδ  are real for the chosen complex-valued ( )z t . Since 
these parameters are arbitrary, all the derived classes are 4-parametric in general. 
 The solution of the initial two-state problem is explicitly written as [19] 

  
2

0 21 /2 ( )
2 ( , , ; , ; )z z i t

Bb z e e H q zα αα δ γ δ ε α+= ,  (13) 

where the parameters of the bi-confluent Heun function γ ,δ ,ε ,α , q  are given as 

  1 12 i kγ α δ= − − ,   0 02 iδ α δ= − ,   2 22 iε α δ= −  (14) 

  0 0 0 1 2 2 2 1( ) (2 ) (1 ) (0) / 2i i k i Qα α α δ α α δ α δ ′′= − + − + − − + , (15) 

  0 1 1 0 0( ) (2 ) (0)q k i i Qα δ α α δ ′= + − − −  (16) 

with *2 2 2
0( ) kQ z U z +=  and 

  0 2 0 (0) / 3! 0i Qα ε α δ ′′′− + = , (17) 

  2
1 1 1(1 ) (0) 0k i Qα α δ− + + + = , (18) 

  2 (4)
2 2 2 (0) / 4! 0i Qα α δ− + = . (19) 

 
3. Series solutions of the bi-confluent Heun equation in terms of the Hermite functions 
 Following the lines of [28] we present the expansion of the solution of the bi-confluent 
Heun equation (5) in terms of the Hermite functions of a shifted and scaled argument: 

  n n
n

u c u=  ,   ( )
0 0 0( )n nH su z zα + += ,  (20) 

where 00 , sα  and 0z  are complex constants. The involved Hermite functions satisfy the following 

second-order linear differential equation: 

  0

2
2 2

0 02
( )2 2 0n n

n n
d u du

u
d

z
z

s s
d

z
z

α+− + = ,   0n nα α= + . (21) 

Substituting equations (20) and (21) into equation (5) and multiplying the result by z  we get 

  ( ) ( )2 2
0 0 0( )( ) 2 2 0n n n n

n
c z z us z z z q z uz sγ δ ε α α ′+ + + + − − + = . (22) 

By putting 0 / 2s ε= ± −  and 0 /z δ ε= , the terms proportional to nzu′  and 2
nz u′  are cancelled so 

that using the recurrence identities 
  0 12n n nusu α −′ = ,   00 1 1( ) / 2n n n nz z us u uα − ++ = + , (23) 

we arrive at a three-term recurrence relation for coefficients nc : 

  1 1 2 2 0n n n n n nR c Q c P c− − − −+ + = , (24) 

where  ( )0 0
2

( ) ( )nR n nα α α γ ε
ε

= + + + −
−

, (25) 
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  0( ( ) )
n

q n
Q

α δ α δ ε
ε

+ + +=  , (26) 

  0( )

2
n

n
P

α α ε
ε

+ +=
−

. (27) 

Here the signs   in the equation for nQ  refer to the choices 0 / 2s ε= ± − , respectively. 

 For the left-hand side termination of the series at 0n =  it should hold 0 0R =  so that 0 0α =  

or 0 /α γ α ε= − . The choice 0 0α =  leads to polynomial solutions, hence, in order to get a more 

advanced series we put 0 /α γ α ε= − . The final expansion is then written as 

  ( )/
0

( / )/ 2n n
n

Hu c zγ α ε ε δ ε+ −

∞

=
± − +=  . (28) 

The series terminates from the right-hand side if two successive coefficients, say 1Nc +  and 2Nc + , 

vanish for some 0,1, 2,...N = . Equation 2 0Nc + =  is satisfied if 0NP = . This is equivalent to the 

condition Nγ = − . Since ε  should be non-zero, the equation 1 0Nc + =  leads to a polynomial 

equation of the degree 1N +  for the accessory parameter q , which is referred to as q -equation. We 
will now see that this equation is satisfied for the particular dissipative two-level problem that we 
consider. 
 
4. A conditionally integrable two-state model 

 For a given field configuration (11)-(12) with input parameters *
0U  and 0,1,2δ , the parameters 

of the bi-confluent Heun function and those of the pre-factor ( )zϕ  involved in the solution (13) are 
calculated through the equations (14)-(19). According to the expansion presented in the previous 
section, in order that the bi-confluent Heun function be written as a finite-sum linear combination of 
the Hermite functions, the parameters of the bi-confluent Heun function should necessarily satisfy 
the condition Nγ = −  with a non-negative integer N  and the corresponding q -equation. 

Obviously, the latter equations cannot be satisfied for arbitrary parameters *
0U  and 0,1,2δ  involved in 

the field configuration (11)-(12). The necessary conditions for termination of the series (28) are 

satisfied only for some special sets of *
0U  and 0,1,2δ . It turns out that in many cases these allowed 

sets are such that some parameters of the field configuration are expressed through other 
parameters. Since then the amplitude- and detuning-modulation functions do not vary 
independently, in these cases we meet conditionally integrable two-state models. 
 We now present an example of such a conditionally integrable two-state model. We consider 
the case of two-term termination of the series (28), so that the solution of the initial two-state 
problem is written as a sum of two Hermite functions. In this case 

  1γ = −   (29) 
and the q -equation is a second-degree polynomial equation [28]: 

  2 0q qδ α− + = . (30) 
Consider the class with 1/ 2k = . For this case equations (29), (30) lead to the only possible value 
for the parameter 1δ : 

  1 / 2iδ = − . (31) 

The field amplitude- and detuning-modulation functions (11), (12) then become 

  *
0

( )
( ) ( )

dz t
U t U z t

dt
= , (32) 
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  0 2
( )

( )
2t
i dz t

t z
z dt

δ δ δ = − + + 
 

. (33) 

As an independent variable transformation we now take the real-valued function exp(2 )z t= Γ  and 
arrive at the following three-parametric level-crossing field configuration: 

  3
0( ) tU t U e= , (34) 

  ( )2 4
0 2( ) ( ) 2 t t

t tt t i e e iδ δ δ δ= − Γ = + − . (35) 

where 0U , 0δ  and 2δ  are arbitrary real parameters. We have here put *
0 02U U=  and 1Γ = . The 

last condition implies that hereafter all the involved parameters are supposed dimensionless. 

Equations (34), (35) define a field configuration with a detuning-modulation function ( )t tδ  

describing an asymmetric-in-time level-crossing process. The field configuration is presented in 
Fig. 1. 
 The crossing of the resonance occurs at the time point 

  0 0 2ln( / ) / 2t δ δ−= . (36) 

We note that in the vicinity of the resonance crossing point the behavior of the detuning is 
approximately modeled by the linear crossing law of the Landau-Zener type: 

  
2

20

2

4
( )t t O t

δδ
δ

= + , (37) 

so that the resonance crossing rate is mostly defined by the combined parameter 2
0 2/δ δ . 
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Fig. 1. Conditionally integrable dissipative two-state level-crossing model (34)-(35). The dashed line is the Rabi 

frequency ( 0 1U = ) and the solid line stands for the detuning ( 2 1δ = , 0 3δ = − ). The filled circle indicates the level-

crossing time point 0 0 2ln( / ) / 2t δ δ−= . 

 
5. The population dynamics of the dissipative two-state system 
 According to the expansion (28), a fundamental solution of the initial two-state problem (1) 
is written through a linear combination of two Hermite functions:   

  ( )2
0 21 /2 ( )

2 0 1 1( ) ( ) ( )z zF i tb t z e e c H y c H yα αα δ
α ε α ε

+
−= + , (38) 

where  
2

y s z
ε δ

ε
−  = + 

 
,   2( ) tz t e Γ= .

 (39)
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The expansion coefficients 0,1c  are conveniently written through the parameters of the bi-confluent 

Heun function, which are readily calculated through the amplitude and detuning modulation 
functions' parameters and an auxiliary parameter 1s = ± . The result reads 

  0 1c = ,   1 2

q
c s

ε δ
α

− − =  
 

. (40) 

We note that 1s = +  and 1s = −  produce linearly independent fundamental solutions. This is readily 
verified by checking the Wronskian of the two solutions. Hence, the linear combination of these 
fundamental solutions 

  2 1 2 2 21 1
( ) F F

s s
b t C b C b

→+ →−
= + . (41) 

with arbitrary constant coefficients 1,2C  presents the general solution of the problem. 

 We consider the situation when the system initially starts from the ground state, that is, we 
impose the initial conditions 

  1 2( ) 1, ( ) 0a b−∞ = −∞ = . (42) 

In Fig. 2 we present the graphs for the probability 
2

1 1( )p a t=  for the atom to stay on the first level 

and the probability 
2

2 2 ( )p b t=  for the atom to be occupying the excited state during the 

interaction. As it is clearly seen, for the chosen field parameters the result of the dissipation is the 
complete removal of the population from both levels. It is understood that this is because the chosen 
field parameters provide a sufficiently intensive interaction with the field accompanied with a 
strong decay rate from the excited state. The analysis of the asymptotes of the solution reveals that 

the physical parameter defining the interaction regime is 2
0 0 2~ / ( )Uλ δ δ : The strong interaction 

regime corresponds to large 1λ  , while the weak interaction regime applies to small 1λ  . 
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Fig. 2. Probabilities 

2
1 1( )p a t=  and 

2
2 2 ( )p b t=  (blue and orange lines, respectively) for the field configuration 

parameters 0 1U = , 0 3δ = − , 2 1δ = .  

 
 As the field amplitude increases, the excitation of the atom intensifies, the second level 
becomes more populated, hence, the losses from the second level become more pronounced (Fig. 
3). In contrast, if the field amplitude decreases, the excitation processes slows down, the excited 
state becomes less populated so that the losses from the second level wash out from the system a 
lesser population and, as a result, the system may end up with a not depleted population of the 
ground state (Fig. 4). 
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Fig. 3. Occupation probabilities for the ground and excited states (blue and magenta lines, respectively) for the field 

configuration parameters 0 2U = , 0 3δ = − , 2 1δ = . 
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Fig. 4. Occupation probabilities for the ground and excited states (blue and magenta lines, respectively) for the field 

configuration parameters 0 0.2U = , 0 3δ = − , 2 1δ = . 

 
 From Figs. 3 and 4 we conclude that if the field amplitude is small, then during the 
interaction the population of the first level decreases, because of the resonance crossing; however, 
at the end of the process the first level still possesses a remnant population, while the second level 
always completely empties because of the losses. In other words, if the coupling is weak (that is the 
Rabi frequency is small), then the interaction is not very intensive (compared to the case presented 
in Fig. 2), so that by the effective time of the resonance crossing the population of the first level 
manages not to get fully exhaust. 
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Fig. 5. Occupation probabilities for the first and second levels (blue and magenta lines, respectively) for the weak but 

long interaction: 0 0.2U = , 0 3δ = − , 2 0.2δ = . 

 
 Finally, even for a weak coupling (small Rabi frequency), complete transition to the second 
level is possible if 2δ  is sufficiently small (Fig. 5). In this case the system remains near the 

resonance for a sufficiently long time period, hence, the second level may be well populated thus 
resulting in complete decay of the population to a third state. 
 
6. Discussion 
 Thus, we have presented an analytic model of a dissipative semi-classical quantum two-state 
problem coupled to an external optical field. The physical processes responsible for the dissipation 
may include photo-induced decomposition of particles, spontaneous emission of photons, collision 
relaxation, etc. In the model we treat, the excited state is supposed to decay irreversibly out of the 
system, while the decay transition from the excited to the ground state is neglected. 
 We have reviewed the specific field configurations for which the time-dependent two-state 
problem is reduced to the bi-confluent Heun equation which is a second-order ordinary linear 
differential equation having a regular singularity and an irregular singularity of rank 2. In order to 
treat the derived solution, we have applied an expansion of the involved bi-confluent Heun function 
in terms of the non-integer order Hermite functions of a scaled and shifted argument. The expansion 
is governed by a three-term recurrence relation between the successive coefficients of the 
expansion. We have discussed the conditions for the derived series to terminate thus resulting in 
finite-sum solutions. 
 As an application of such a termination to the two-state problem under consideration, we 
have identified a conditionally integrable resonance-crossing field configuration for which the 
termination results in a general solution written through fundamental solutions each of which 
involves an irreducible linear combination of two Hermite functions. This is a configuration given 
by an exponentially diverging Rabi frequency and a level-crossing detuning that starts from the 
exact resonance and exponentially diverges at the infinity. Using the two-term Hermite-function 
explicit solution, we have studied the population dynamics in different interaction regimes. 
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