- 9. Кангур К. Э. Автореф. канд. дисс., Тарту, 1977.
- 10. Кирпиченко М. Я. Тр. Гидробнол. ст. АН УССР, 19, 3-83,, 1939.
- 11. Ковалькова М. П. Тр. Уральск. отд. Сибрыбниипроект, 9, 219—228, 1975.
- 12. Ковалькова М. П. Сб. Уральск. отд. ГосНИОРХ, 10, 81-85, 1979.
- 13. Ковалькова М. П. Сб. Уральск. отд. ГосНИОРХ, 10, 86—92, 1979.
- 14. Константинов А. С. Докл. АН СССР, 120, 5, 1151-1154, 1958.
- 15. Константинов А. С. Науч. докл. высш. школы, биол. науки, 9, 136—141, 1967.
- 16. Константинов А. С. Науч. докл. высш. школы, биол. науки, 3, 22—29, 1970.
- 17. Кузьменко К. Н. Автореф. канд. дисс., Л., 1972.
- 18. Мамилова Р. Х. Биол. и геогр., 5, 162-171. Алма-Ата, 1968.
- 19. Меньшуткин В. В., Приходько Т. И. Гидробнол. ж., 4, 6, 3—11, 1968.
- 20. Методы определения продукции водных животных. Минск, 1968.
- 21. Нечваленко С. П. Автореф. канд. дисс., М., 1978.
- 22. Островский И. С. Биол. ж. Армении, 33, 12, 1301-1309, 1980.
- 23. Пастухова Е. В. Автореф. канд. дисс., М., 1978.
- 24. Полищук Л. В., Романовский Ю. Э. Ж. общ. биол., 41, 5, 645-654, 1980.
- 25. Соколова Н. Ю. Автореф. канд. дисс., М., 1973.
- 26. Соколова Н. Ю. Комплексн. исслед. водохр., 2, 101-121, 1973.
- 27. Соколова Н. Ю. В кн.: Проблемы экологии Прибайкалья. Иркутск, 1979.
- 28. Соколова Н. Ю. В кн.: Бентос Учинского водохранилища. М., 1980.
- 29. Слепухина Т. Д. В кн.: Озеро Кубенское, З, Л., 1977.
- 30. Тодераш И. К. Автореф. канд. дисс., Одесса, 1979.
- 31. Тодераш И. К. В кн.: Общие основы изучения водных экосистем. Л., 1979.
- 32. Тодераш И. К. В кн.: Рыбохозяйственное использование колхозных прудов Молдавии. Кишинев, 1981.
- 33. Шадрин Н. В. Биол. моря, 42, 56-60, 1977.
- 34. Яблонская Е. А. Автореф. канд. дисс., М., 1947.
- Яблонская Е. А. В кн.: Методы определения продукции водных животных. Минек, 1968.
- 36. Lundbeck J. Arch. Hydrobiol., Suppl., Bd., 7, 1-471, 1926.
- 37. Mackey A. P. Oikos, 28, 2-3, 270-275, 1977.
- 38. Neess J., Dugdale R. Ecology, 40, 3, 425-430, 1959.
- 39. Terek J. Biologia (Bratislava), 35, 2, 111-120, 1980.
- 40. Titmus G., Badcock R. M. In: Chironomidae: Ecol., Syst., Cytol, and Phisiol Proc. 7th. Int. Symp., Dublin. 1979, 299-305, 1980.
- 41. Waters T. F. Amer. Naturalist, 103, 930, 173-185, 1969.
- 42. Wisniewski R. Acta Univ. N. Copernici, 38, 99-111, 1976.
- 43. Zytkowicz R. Acta Univ. N. Gopernici, 38, 75-97, 1976.

«Биолог. ж. Армении», т. XXXV, № 9, 1982

КРАТКИЕ СООБЩЕНИЯ

УДК 576.8.575.24

N-МЕТИЛ-N'-НИТРО-N-НИТРОЗОГУАНИДИН-ИНДУЦИРОВАННЫЙ МУТАГЕНЕЗ РИБОСОМНЫХ МУТАНТОВ ESCHERICHIA COLI

Э. Г. МУГНЕЦЯН, С А. ХАЧАТРЯН

Ключевые слова: Е. coli, рибосомные мутанты, частота мутирования.

Проблема специфичности мутагенеза не может быть решена без оценки роли клеточных процессов и отдельных клеточных компонентов

в мутационном процессе [2]. Вклад таких важнейших клеточных компонентов, как РНК-полимераза, тРНК и рибосома, показан в спонтанном и индуцированном различными факторами мутагенезе [2—4] с использованием системы индукции обратных мутаций.

Цель настоящей работы состояла в количественной оценке роли важнейшего компонента клетки—рибосомы в спонтанном и N-метил-N'-нитро-N-нитрозогуанидин (НГ)-индуцированном мутагенезе с использованием системы мутаций от способности сбраживать лактозу к потере этой способности у рибосомных мутантов Е. coli. Рибосомные (стрептомицинустойчивые) мутанты выделены и изучены нами ранее [5, 6]. Штаммы, пригодные для решения поставленной задачи, сконструированы нами переносом гРSL локуса стрептомициновых мутантов в соответствующие исходные штаммы, у которых они выделялись.

Материал и методика. В работе использованы неходные штаммы CaF_1 У, CAF 70, CA167, несущие различные нонсенс-мутации в β -галактозидазном гене и соответствующие супрессоры, исправляющие данные мутации. Штаммы тр. 95/CAF 70, тр. 32/CA F_1 У и тр. 17/CA 167 конструировались нами переносом rPSL локуса отобранных мутантов в соответствующие исходные штаммы методом трансдукции [7] с помощью фага P_1 кс. НГ использован в концентрации 200 мкг/мл, при которой инактивировалось $\sim 50\%$ клеток и наблюдался максимальный выход мутаций. Обработку мутагеном проводили по прописи в книге Миллера [1].

В качестье питательных сред использованы индикаторная среда Эндо, жидкая питательная среда—пептонная вода + аминопептид.

Результаты и обсуждение. В настоящем сообщении представлены результаты изучения спонтанного и НГ-индуцированного мутагенеза сконструированных и исходных штаммов. В табл. 1 приведены значения индексов спонтанного мутирования лак $^+$ \rightarrow лак $^-$.

Таблица 1 Индексы спонтанных мутаций лак $^+$ → лак $^-$ контрольных штаммов и их трансдуктантов

· Fame Juranion										
Штаммы	Количе- ство опытов		Обнаружено мутантов на 10 ⁷ клеток		Отношение индек- сов трансдуктан- тов к контролю					
CAF 70 Tp 95/CAF 70 CAF ₁ V Tp 32/CAF ₁ V CA 167 Tp 17/CA 167	14 14 11 14 12 14	$ \begin{array}{c} 2.0 \cdot 10^{10} \\ 1.2 \cdot 10^{10} \\ 8.0 \cdot 10^{9} \\ 8.8 \cdot 10^{9} \\ 1.4 \cdot 10^{10} \\ 1.0 \cdot 10^{10} \end{array} $	1,3 4,7 1,0 4,4 2,0 3,1	0,65±0,03 3,91±0,07 1,25±0,05 5,00±0,17 0,89±0,02 3,1 ±0,05	1,0 6,0 1,0 4,0 1,0 3,3					

P—достоверность разницы индексов мутирования трансдуктантов от контрольных штаммов < 0.05.

Как видно из табл. 1, значения индексов мутирования трансдуктантов и контрольных штаммов статистически достоверно различны. При этом не обнаружено штаммспецифичности. Все трансдуктанты независимо от штамма, от которых они выделялись, увеличивают частоту спонтанного мутирования по сравнению с контрольным штаммом.

Результаты НГ-индуцированных лак⁺ → лак — мутаций изученных штаммов представлены в табл. 2.

Таблица 2 Индексы НГ-индуцированных лак $^+ \rightarrow$ лак $^-$ мутаций у контрольных и сконструированных штаммов

Штаммы	Выжи- ваемость, %	Количе- ство опытов	Проверено бактериаль- ных клеток, ×109	Количество мутантов, ×108	Индексы мутиро- вания	Отношение ин- дексов транс- дуктантов к контролю
CAF 70	50	5	1,3	1,6	0,12	1,0
тр 95/САГ 70	48	5	1,0	8,2	0,78	6,5
CAF ₁ y	47	6	1,1	1,5	0,10	1,0
тр 32/САГ ₁ У	52	6	1,2	8,8	0,73	7,3
CA 167	53	6	3,2	3,7	0.11	1,0
тр 17/СА 167	50	5	1,0	7,3	0,73	6,6

P—достоверность разницы индексов мутирования трансдуктантов от контрольных итаммов < 0.04.

Как видно из табл. 2, индексы индуцированных мутаций у всех сконструированных штаммов достоверно выше контроля. В экспериментах НГ-индуцированного мутагенеза, как и в спонтанном, не обнаружено количественной зависимости увеличения индексов реверсий от характера штамма. Результаты изучения как спонтанного, так и индуцированного НГ-мутирования от способности сбраживать лактозу к потере этой способности свидетельствуют об участии в этом процессе рибосом независимо от систем, изученных в мутационном процессе.

Ереванский государственный университет, кафедра генетики и цитологии

Поступило 19.111 1982 г.

ЛИТЕРАТУРА

- 1. Миллер Дж. Эксперименты в молекулярной генетике. М., 1976.
- 2. Оганесян М. Г. Биолог. ж. Армении, 22, 12, 27-35, 1969.
- 3. Оганесян М. Г., Читчян М. Б. Биолог. ж. Армении, 30, 5, 3-8, 1977.
- 4. Оганесян М. Г., Чахалян А. Х. Биолог. ж. Армении, 30, 9, 3-9, 1977.
- 5. Оганесян М. Г., Мугнецян Э. Г. Биолог. ж. Армении, 29, 11, 21, 1976.
- 6. Оганесян М. Г., Мугнецян Э. Г., Джанполадян Л. О. Биолог. ж. Армении, 30, 1, 18, 1977.
- 7. Leboy R., Cox E. C., Flaks G. J. Proc. Natl. Acad. Sci. USA, 52, 1967, 1964.