УДК 663.2.252.41/.256(479.25)

АМИНОКИСЛОТНЫЙ СОСТАВ ДРОЖЖЕВОЙ ГУЩИ ВИНОДЕЛИЯ И ЕЕ ИЗМЕНЕНИЕ В ПРОЦЕССЕ ХРАНЕНИЯ

Б. П. АВАКЯН, Л. С. ВАРТАНЯН, Н. А. ТЕР-БАЛЯН

Установлено, что в дрожжевой гуще виноделия содержится 17 аминокислот, количество которых при хранении изменяется. До определенного срока хранения оно увеличивается до 30, 350 мг в 300 мг с. с. гущи, а при продолжительном хранении в теплых помещениях уменьшается вследствие развития в ней нежелательной микрофлоры и, естественно, приводит к порче дрожжевой гущи.

Ключевые слова: дрожженая гуща, аминокислоты, виноделие.

Одним из отходов виноделия (10—12%) является дрожжевая гуща, в состав которой входят винные дрожжи, содержащие множество ценных биоактивных соединений (жиры, углеводы, витамины, ферменты, белки, аминокислоты и др.). В дрожжах содержатся все необходимые аминокислоты. В процессе хранения дрожжевой гущи в ней развиваются дикие дрожжи, бактерии и плесени. Бактерии и плесневые грибы в процессе своего метаболизма образуют органические кислоты—лимонную, фумаровую, глюконовую, молочную, итаконовую, уксусную и др.). Многие плесневые грибы (Rhizopus, Aspergillus, Penicillium и др. образуют значительное количество лимонной, щавелевой, фумаровой, глюконовой, янтарной, яблочной и других органических кислот, обладающих способностью превращаться друг в друга. Известно также, что янтарная и фумаровая кислоты синтезируются микроорганизмами из уксусной кислоты. В свою очередь органические кислоты являются одним из исходных материалов для синтеза аминокислот [4].

Исследовано влияние органических кислот на синтез свободных внутриклеточных аминокислот у бактерий; при этом установлено, что бактерии способны аминировать органические кислоты, в частности кетокислоты, с образованием аминокислот [6]. Реакция образования аминокислот путем прямого аминирования кетокислот аммиаком подтверждает предположение о непосредственной связи между обменом углеводов и обменом аминокислот и белков. Все аминокислоты, кроме аспарагиновой, глутаминовой и аланина, получают свою аминогруппу в результате переаминирования с одной из «первичных» аминокислот [3].

Исходя из того, что дрожжевая гуща виноделия содержит много ценных биоактивных соединений [1], в частности аминокислот, мы исследовали ее аминокислотный состав и его изменение в процессе хранения с целью дальнейшего использования в народном хозяйстве.

Материал и методика. Исследовалась дрожжевая гуща виноделия, взятая из винных заводов Араратской равнины—Арташатского, Аштаракского, Эчмиадзинского и Октемберянского. Анализ проводился раз в 2 месяца. Было исследовано 5 партий-гущи: І партия—22/XI—79 г. (при температуре хранения 10—12°), II—13/II—80 г.

(при $5-10^{\circ}$), III—29/IV—80 г. (при $10-15^{\circ}$), IV—24/VI—80 г. (при $12-18^{\circ}$), V—18/VIII—80 г. (при $12-15^{\circ}$).

Подготовку дрожжевой гущи к анализам проводили по методике Авакянца, 1980 г. [2], исходя из которой отфильтрованная гуща разбавлялась водой (с соотношением 110, при температуре воды 30°), добавлялась сода (кальцинированная) и этот состав перемешивался при температуре 30° в течение часа. Затем гуща фильтровалась, высушивалась в термостате при температуре 30—35°, размельчалась и в ней определялись внутриклеточные свободные и связанные аминокислоты.

Исследования свободных и связанных аминокислот проводились по методике Тер-Карапетяна и др. [5]. Свободные аминокислоты определялись следующим образом: к определенному количеству сухой растертой гущи добавляли 80%-ный спирт (для 100 мг—3 мл) и на 30 мин ставили на водяную баню с обратным холодильником при температуре не более 79°. Затем помещали в холодильник на сутки, после центрифугировали при 3000 об/мин в течение 5 мин. Центрифугат, в котором содержатся свободные аминокислоты, выпаривали.

В оставшемся после центрифугирования осадке определяли связанные аминокислоты. Осадок высушивали, затем осуществляли гидролиз 6н HCl (на 100 мг сухой гущн 5 мл 6н HCl) в течение 4 ч. После гидролиза в центрифужные пробирки добавляли 80%-ный этиловый спирт с тем, чтобы он составлял 3% общего количества гидролиза, после чего центрифугировали при 3000 об/мин в течение 5 мин. Центрифугат выпаривали при температуре 40°. Анализы проводились на аминокислотном анализаторе марки AAA-881.

Результаты и обсуждение. В дрожжевой гуще выявлено 17 аминокислот; лизин, гистидин, аргинин, аспарагиновая кислота, треонин, серин, глютаминовая кислота, пролин, глицин, аланин, цистин, валин, метионин, изолейцин, лейцин, тирозин, фенилаланин. Определено содержание свободных и связанных аминокислот в свежей дрожжевой гуще и в процессе хранения. Содержание свободных и связанных аминокислот в дрожжевой гуще Арташатского винного завода дано в табл. 1.

Как видно из табл. 1, в свежей дрожжевой гуще у свободных аминокислот наибольшее содержание пролина—0,989 мг, аланина—0,224 мг, лейцина—0,148 мг, а наименьшее содержание метионина—0,007 мг. Цистин не обнаружен. В процессе хранения (до IV партии) количество свободных аминокислот постепенно уменьшается, доходя у пролина до 0,078 мг, аланина—0,018 мг, лейцина—0,011 мг. Из связанных же аминокислот (табл. 1) в свежей дрожжевой гуще (I партия) доминируют: глютаминовая кислота—2,705 мг, аспарагиновая кислота—2,342 и лизин—1,597 мг. В процессе хранения наблюдается увеличение количества связанных аминокислот. Через 2 месяца (II партия) количество глютаминовой кислоты— составляет 3,400 мг, аспарагиновой кислоты—2,890 мг, лизина—1,920 мг. Спустя 4 месяца (III партия) оно уже доходит у глютаминовой кислоты до 3,450 мг, у аспарагиновой—3,110 мг, лизина—2,230 мг.

При дальнейшем хранении отмечается та же тенденция.

Подобная же картина наблюдается в дрожжевой гуще других винных заводов.

Максимальное содержание аминокислот обнаружено в дрожжевой гуще Октемберянского винного завода (табл. 2). Из таблицы видно, что у свободных аминокислот доминируют пролин—0,547 мг, лейцин—0,042 мг, аланин—0,090 мг. Количество пролина намного превышает содержание других аминокислот. Гистидина и метионина почти нет—

Содержание свободных и связанных аминокислот дрожжевой гущи Арташатского винного завода, мг на 300 мг сухого веса

	Свободные аминокислоты			С язанные аминокислоты			
Амино ислоты	1 naprus 22/X179 r. 11 naprus 13 11 -60 r.	III на тия 29/1х—80 г.	1V партия 24/V1 80 г.	I партия 22/XI-791.	II партия 13/II – 80 г.	111 партия 29/1V—80 г.	IV партия 2! VI—80 г.
Лизин Гистидин Аргинин Аспарагиновая кислота Треонин Серин Глютамицовая кислота Пролин Глицин Аланин Цистин Валин Метионин Изолейцин Лейцин Тирозин Фенилаланин	0.082 0,090 0.015 следы 0.055 0.050 0.079 0.080 0.035 0.040 0.050 0.050 0.083 0,120 0.989 0,600 0.049 0.030 0.224 0,150 0.096 0.090 0.007 следы 0.067 0,060 0.148 0,150 0.068 0,070 0.079 0,080	0,003 0 u05 0,005 0 005 0 002 0 009 0 024 0,047 0 004 0,014 0,005 	0,005	1,597 0,637 0,862 2,342 0,879 1,153 2,705 1,430 1,529 1,677 следы 0,708 0,234 0,478 1,394 1,394 1,394 1,394	2,890 1,120 1,500 3,340 1,770 1,770 1,900 следы 0,730 0,250 0,580 1,730 0,770 0,880	0,633 0,980 3,110 1,110 1,490 3,450 1,290 1,880 2,040 Следы 0,870 0,390 0,560 1,810 0,960 1,040	2,359 0,700 1,030 3,160 1,180 1,580 3,560 1,400 1,910 2,120 следы 0,950 0,430 0,600 1,960 0,980 1,090
Сумма	2,126 1,639	0,153	0,209	19,255	22,580	23,840	26,000

Таблица 2 Содержание свободных и связанных аминокислот дрожжевой гущи Октемберянского винного завода, мг на 300 мг сухого веса

On temocryments and the second								
-7 - 1	Свободные аминокислоты			Связанные аминокислоты				
Аминокислогы	1 партия 22/XI—79 г.	II партия 13/II—80 г	III партия 29, IV—80 г.	IV партия 24/VI—80 г.	I партия 22/XI—79 г	II партия 13/II—80 г.	III партия 29,IV—80 г.	IV партия 24 VI —80 г
Лизин Гистидин Аргинин Аспарагиновая кислота Треонин Серин Глютаминовая кислота Пролин Глицин Аланин Цистин Валин Метионин Изолейцин Лейцин Тирозин Фенилаланин	0.033 0.038 0.033 0.037 0.030 0.033 0.547 0.019 0.090 	Следы 0,140 0,140 0,080 0,110 0,200 0,410 0,050 0,200	следы 0,007 0,012 0,005 0,009 0,026 0,073	о,017 0,017 0,010 0,015 0,024 0,046	1,928 0,478 1,114 3,100 1,154 1,404 3,277 1,483 1,679 2,142 cre.1ы 0,927 0,307 0,650 1,869 1,020	0,800 1,400 3,500 1,410 1,880 3,910 1,620 1,880 2,230 следы 1,060 0,310 0,720 2,110 1,210	0,770 1,330 3,990 1,440 2,020 4,260 1,520 2,100 2,600 cne,mis 1,150 0,540 0,750 2,390 1,160	2,380
Сумма	0,952	2,360	0,202	0,223	23,552	27,840	30,150	29,780

отмечены только следы, а цистин не обнаружен. Исследования выявили уменьшение содержания свободных аминокислот до IV партии включительно.

Из табл. 2 видно также, что из связанных аминокислот в свежей дрожжевой гуще (I партия) преобладают: глютаминовая кислота—3,277 мг, аспарагиновая кислота—3,100 мг, лизин—1,928 мг, аланин—2,142 мг. После 2-х месящев хранения содержание аминокислот доходит: глютаминовой—до 3,900 мг, аспарагиновой—3,500 мг, лизина—2,600 мг, аланина—2,230 мг. К концу 4-го месяца происходит максимальное увеличение: глютаминовой кислоты—до 4,260 мг, аспарагиновой кислоты—3,990 мг, лизина—2,830 мг. Начиная с IV партии наблюдается уменьшение их количества: глютаминовой кислоты—4,080 мг, аспарагиновой кислоты—3,610, лизина—2,710 мг.

Сумма свободных и связанных аминокислот дрожжевой гущи вышеуказанных винных заводов дана в табл. 3.

Таблица 3-Сумма свободных и связанных аминокислот дрожжевой гущи различных винных заводов в процессе хранения, 300 мг сухого веса

Винные заводы	I партия,	II партия,	III партия,	IV партия,
	22/X1—79 г.	13/II—80 г.	29/1V—80 г.	24 VI—80 г.
Арташатский	21,380	24,219	23,993	26,209
Аштаракский	18,057	19,420	21,124	25,025
Эчмиадзинский	23.798	29,650	28,870	28,873
Октемверянский	24,504	30,200	30,352	30,003

Как видно из табл. 3, наибольшее суммарное количество свободных и связанных аминокислот содержится в дрожжевой гуще Октемберянского винного завода, причем в III партии оно достигает максимума—30,352, т. е. больше 10%.

Таким образом, при хранении дрожжевой гущи до 6-ти месяцев наблюдается уменьшение внутриклеточных свободных и увеличение связанных аминокислот. Соответственно изменяется сумма свободных и связанных аминокислот. При дальнейшем хранении, по-видимому, вследствие повышения температуры и соответственно активации деятельности микроорганизмов, количество аминокислот уменьшается.

Институт виноградарства, виноделия и плодоводства МСХ Армянской ССР

Поступило 5.ИИ 1982 г.

ԳԻՆԵԳՈՐԾՈՒԹՅԱՆ ՇԱՔԱՐԱՍՆԿԱՑԻՆ ԴՈՒՐԴԻ ԱՄԻՆԱԹԹՎԱՅԻՆ ԿԱԶՄԸ ԵՎ ՆՐԱ ՓՈՓՈԽՈՒԹՅՈՒՆԸ ՊԱՀՄԱՆ ԸՆԹԱՑՔՈՒՄ

P. M. ԱՎԱԳՅԱՆ, I V. ՎԱՐԴԱՆՅԱՆ, Ն. Հ. ՏԵՐ-ԲԱԼՅԱՆ

Շաջարասնկային դուրդի մեջ Հայտնաբերվել են 17 ամինաβԹու, որոնց մեջ որպես ազատ ամինաԹԹուներ գերակշռում են պրոլինը, ալանինը և լեյ֊ ցինը, իսկ որպես կապված՝ գլուտա<mark>մինաԹԹուն, ասպարագինաԹԹուն և լի-</mark> դինը։

Փորձերը ցույց են տվել, որ շաքարասնկային դուրդը մինչև վեց ամիս պահելու դեպքում աստիճանաբար նվազում է նրա ներբջջային ազատ ամի- նախնուների քանակը և ավելանում են կապված ամինախխուները։ Պահման ժամանակի ավելացման հետ, որը համընկնում է պահամանների ջերմաստի- ճանի բարձրացման (ամառվա ամիսներին), նկատվում է որոշ ամինախխոււների փչացում, որն ըստ երևույթին պայմանավորված է դուրդի մեջ տարբեր միկրոօրգանիզմների կենսագործունեության ակտիվացումով։

AMINOACID INGREDIENTS OF WINE LEES AND ITS CHANGES IN THE PROCESS OF STORAFE

B. P. AVAKIAN, L. S. VARTANIAN, N. H. TER-BALIAN

It has been established that wine lees contains seventeen amino-acids and this number changes at storage. It increases to 30,35 mg in 300 mg of dry lees after a definite time of storage and decreases during a long-term storage in warm places, which is conditioned by development of undesirable microflora and natural spoilage of wine lees.

ЛИТЕРАТУРА

- Авакян Б. П., Арзуманян П. Р., Авакянц С. П. Авторское свидетельство Госкомизобретений, № 422768, 1974. «Новый способ утилизации дрожжевой гущи и других осадков виноделия с целью получения биоактивного продукта для животноводства», 1974.
- 2. Авакянц С. П. Биохимические основы технологии шампанского. 351, М., 1980.
- 3. Коновалов С. А. Биохимия дрожжей. М., 1980.
- 5. Тер-Карапетян М. А. и др. Биолог. ж. Армении, 21, 11, 1968.
- -6. Шапошников В. Н., Орлова И. Г. Журнал общей, сельхоз. и пром. микробиологии. 34, вып. 4, 1965.

«Биолог. ж. Армении», т. XXXV, № 9, 1982

УДК 595.7+595.77+591.526+577.95+577.472

ПРОСТЕЙШАЯ МОДЕЛЬ ПРОДУКЦИОННОГО ПРОЦЕССА ОДНОВОЗРАСТНОЙ ПОПУЛЯЦИИ ОРГАНИЗМОВ С ПАРАБОЛИЧЕСКИМ ВЕСОВЫМ РОСТОМ

И. С. ОСТРОВСКИЙ

В работе проанализированы продукционные характеристики и их соотношения в популяциях организмов с параболическим типом весового роста на примере личинок Ch. plumosus. С помощью модели исследованы возможные значения P/B коэффициентов и некоторые практические способы их определения.

Ключевые слова: параболический тип весового роста, продукция, P/B коэффициент, личинки Chironomus plumosus.