### ЛИТЕРАТУРА

1. Авцын А. П., Марачев А. Г., Матвеев Л. Н. Тез. докл. 2-й Всесоюзн. конф. по адаптации человека к различным географическим, климат. и производ. условиям. 1, 4, Новосибирск, 1977.

2. Захарян А. Б. Кровообращение, 7, 5, 64, 1974.

- 3. Казначеев В. П., Шорин Ю. П. Вестник АМН СССР, 7, 76, 1980.
- 4. Калюжный И. Т., Нарбеков О. Н., Белякова Р. Б., Баймуратова Р. Х. Сб.: Научн. тр. Кирг. мед института. 110, 94, 1976.
- 5. Канторович И. Н. Уч. записки Кабардино-Балкарского гос. унт-а, 33, 113, 1966.

6. Макаров В. К. В кн.: Человек и среда. Л., 1975.

- 7. Миррахимов М. М., Раимжанов А. Р. В кн.: Человек и среда. Л., 1972. 8. Пилипенко Г. В. Сб.: Научн. тр. Кирг. мед. института, 110, 100, 1976.
- 9. Пилипенко Г. В. Сб.: Научн. тр. Кирг. мед. института, 105, 1976.
- 10. Саалиева Р. З. Сб.: Научн. тр. Кирг. мед. института, 123, 54, 1977.
- 11. Саалиева Р. З. Сб.: Научн. тр. Кирг. мед. института, 91, 1977. 12. Саалиева Р. З. Сб.: Научн. тр. Кирг. мед. института, 111 1977.
- 13. Степанян М. С., Казарян Г. А. Мат-лы 2-й республ. конф. эндокринологов Арменин. 48, 1968.
- 14. Ткачев А. В., Ардашев А. А., Аветисян Е. К. Тез. докл. 2-й Всесоюзн. конф. по адаптации человека к различным географ., климат. и производ. условиям. 1, 321. Новосибирск, 1977.
- 15. Шурыгин Ю. М., Алексеева М. М., Калпов В. А. и др. Адаптация человека в особых условиях обитания. Л., 1978.
- 16. Ярославский В. Е., Бычков В. Г. В кн.: Научн-тех. прогресс и приполярная медицина. 1, 282. Новосибирск, 1978.
- 17. Rastogi G. K. J. Clinic Endocrin, 44, 3, 447-452, 1977.
- 18. Slater J. D. Clin Sci, 37, 10. 327-341, 1969.

«Биолог. ж. Армении», т. XXXV, № 9, 1982

УДК 576.893.192.6

### КРИОПРЕЗЕРВАЦИЯ ЭРИТРОЦИТАРНЫХ СТАДИЙ PLASMODIUM BERGHEI

### А. С. ОГАНЕСЯН

Крпогенное консервирование эритроцитарных стадий малярийных паразитов обеспечивает хранение нужных штаммов, которые не теряют столь важных свойств, как инфективность.

Ключевые слова: криопрезервация, эритроцитарные стадии, криопротектант.

Одной из наиболее интересных и важных в практическом отношении проблем современной медицинской протозоологии является криогенное консервирование патогенных простейших, в частности, малярийных паразитов. Методы криопрезервации могут обеспечивать длительное хранение необходимых штаммов с целью создания банков референсштаммов, их сравнительного изучения в разных лабораториях мира, дальнейшего культивирования и накопления иммуногенного материала для вакцинации, испытания химиотерапевтических препаратов [3, 4].

Перевиваемые штаммы в лабораторных условиях используются на протяжении длительного периода и поддерживаются непрерывным пассированием. Известно, что длительное пассирование на животных может привести к изменению вирулентности и инфективности данного штамма по сравнению с исходной.

Хотя известно об относительной устойчивости эрипроцитарных стадий малярийных паразитов к разным режимам замораживания, оптимальные условия сохранения как жизнеспособности клеток-хозяев, так и инфективных свойств паразитов на разных стадиях развития все еще являются объектом изучения. Обычно для замораживания эритроцитарных стадий малярных паразитов млекопитающих применяется двухступенчатый способ замораживания, включающий предварительное замораживание при —20°, —31° или —70° до погружения в жидкий азот при температуре —196°. Оптимальной температурой при замораживании считается температура жидкого азота (—196°) или его пары (—170°), где паразиты сохраняют жизнеспособность. Установлено также, что кровяные сгадии малярийных паразитов лучше выдерживают замораживание при применении таких криозащитных веществ, как глищерин [2] и диметилсульфоксид [1].

Материал и метсдика Исследования проводились на штамме Р. вегghei, полученном из Гданьского института морской медицины, ПНР, в 1962 г. Штамм поддерживался непрерывными еженедельными пассажами на беспородных белых мышах 10—12 г Мышей заражали инфицированной кровью с 10%-ной паразитемией внугрибрюшинно по 0,1 мл. На 5—6-е сут. после заражения у белых мышей развивалась паразитемия, достигающая 80—90%. Гибель мышей наступала на 7—8-е сут. Приготовленные мазки крови фиксировали в метиловом спирте 1—2 мин. Окрашивание мазков проводили по методу Романсвокого-Гимзы на фосфатном буфере в течение 15—20 мин в термостате при 37°.

В качестве замораживающей смеси нами выбрана смесь с низким содержанием глицерина: 28%—глицерина, 3%—сорбитола и 0,65%—NaCl [5].

Замораживание образцов осущсствлялось после отделения инфицированных эритроцитов от плазмы путем центрифугирования при 1500 об/мин в течение 10 мин. Надосадочная жидкость сливалась, а осадок ресуспендировали в соответствующем количестве крнозащитного вещества. Были использованы разные соотношения инфицированной крови мышей и криопротектанта (1:1, 1:2, 1:3). Инфицированный материал в объеме 0,5 мл. (смесь инфицированной крови с криопротектантом) замораживали путем медленного погружения в пары жидкого азота.

Оттаивание проводилось быстро, переносом инфицированного материала из жидкого азота в теплую воду при температуре 37° на одну мин. Образцы с инфицироганным материалом центрифугировали при 1500 об/мин в течение 7 мин. Надосадочную жидкость сливали, а осадок ресуспендировали в равном объеме 3,5% NaCl и центрифутировали при том же режиме.

Результаты и обсуждение. В данной работе приводится оценка материала, находящегося в условиях глубокого замораживания в течение 42—123 дней. Определение соотношения разных стадий развития паразитов в крови выявило, что при хранении зараженной Р. berghei крови в парах жидкого азота при—170° с максимальной паразитемией до 90% последняя снижается почти вдвое. При этом отмечаются резкое уменьшение числа колец и лучшая выживаемость профозоитов по сравнению с кольцами. Так, при хранении инфицированного материала

(исходная паразитемия 90, кольца—27, трофозоиты—38, шизонты—25%) в течение 42 дней общая паразитемия снижалась до 47% и обнаруживалось следующее соотношение стадий развития: кольца—2, трофозоиты—36, шизонты—9%. Увеличение срока хранения до 123-х дней не вызывало уменьшения количества инфицированных эритроцитов (общая паразитемия—42%) и содержащихся в них эритроцитов. Было отмечено снижение количества колец и шизонтов: кольца—1, трофозоиты—29, шизонты—12%. Контроль сохранности исходной инфективности штамма проверяли путем интраперитонеального заражения белых мышей, которым вводилось 0,1 мл. инфицированной крови. Мыши при первичном заражении погибали на 9—10-е сут, однако на втором пассаже первоначальные сроки гибели восстанавливались.

Таким образом, на основании количественной оценки не только общей паразитемии, но и соотношения различных стадий (кольца, трофозоиты, шизонты), а также контроля инфективности замороженного материала на белых мышах нами предлагается упрощенный, одноступенчатый способ замораживания эритроцитарных стадий возбудителя маля-

рии прызунов.

Институт медицинской паразитологии и тропической медицины им. Е. И. Марциновского МЗ СССР, г. Москва

Поступило 2.IV 1982 г.

## PLASMODIUM BERGH EI ԷՐԻԹՐՈՑԻՏԱՐ ՓՈՒԼԵՐԻ ԿՈՆՍԵՐՎԱՑՈՒՄԸ

### Հ. Ս. ՀՈՎՀԱՆՆԻՍՏԱՆ

Կրիոգեն կոնսերվացման բազմաթիվ մեթոդները Հնարավորություն են տալիս ապահովել անհրաժեշտ շտամների երկարատև պահպանումը իմունոգեն նյութի կուտակման նպատակով՝ հետագա վակցինացման և ջիմիաթերապետիկ պրեպարատների փորձարկման համար։ Որպես օրենջ մալարիայի պարազիտների էրիթրոցիտար փուլերի կոնսերվացումը (սառեցումը) կատարվում է երկաստիճանային եղանակով։ Մենջ առաջարկում ենջ ավելի պարզմեկաստիճանային եղանակ, որի դեպջում վարակված արյան կոնսերվացումը կատարվում է հեղուկ ազոտի գոլորջիների միջավայրում 42—123 օրվա ընթացջում, որի հետևանջով մալարիայի պարազիտները պահպանում են իրենց վարակիչ հատկությունները։

# CRYOPRESERVATION OF ERYTHROCYTIC STAGES OF PLASMODIUM BERGHEI

### H. S. OGANESIAN

There are many methods of cryopreservation that may secure prolonged storage. Usually, for freezing erythrocytic stages of malarial parasites two-stepping methods are used. We propose a one-stepping freezing method in the vapour of liquid nitrogen of the infected blood, that was in the liquid nitrogen for 42-123 days. During this period the infected blood doesn't lose its properties.

#### ЛИТЕРАТУРА

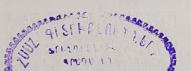
- 1. Collins W. E., Jeffery G. M. J. of Parastiology, 48, 521-525, 1973.
- 2. Jeffery G. M. J. of Parasitology, 48, 601-606, 1962.
- 3. Leef J., Strome C. P. A., Beaudoin R. L. Bullet, in of the World Health Organization, 57, 87-91, 1979
- 4. Mitchell C. et al. Glinical and experimental immunology, 28, 276-279, 1977.
- 5. Rowe A. W., Eyster E., Kellner A. Cryobiology, 119-128, 1968.

«Биолог. ж. Армении», т. XXXV, № 9, 1982

УДК 576.3+577.3+578.088

# ИСПОЛЬЗОВАНИЕ ФЛУОРЕСЦЕНТНЫХ ЗОНДОВ В ИССЛЕДОВАНИИ КЛЕТОЧНЫХ И МОДЕЛЬНЫХ МЕМБРАН

#### С. А. БАДЖИНЯН


Рассматриваются литературные и собственные данные о применении флуоресцентных зондов в исследовании структурных изменений биологических и модельных мембран при воздействии на них различных биологически активных соединений. Приведены используемые при исследовании различных мембранных процессов флуоресцентные зонды, описаны их свойства и характеристика.

Ключевые слова: биологические мембраны, модельные мембраны, флуоресцентные зонды, липосомы.

Изучение молекулярной организации и функционирования мембран клеток и внутриклеточных структур в настоящее время является одним из ведущих направлений современной биологии.

Исследование физической структуры биологических мембран представляет некоторую сложность. Сложный состав, гетерогенность, высокое светорассеяние суспензии мембран в значительной мере затрудняют применение оптических методов и интерпретацию результатов. Кроме того, большинство физико-химических и оптических методов дает информацию о мембране в среднем, тогда как структурные изменения при ее функционировании происходят, возможно, только в отдельных активных участках. В последние годы после публикации работ Добрецова [3, 6, 13] для исследования мембран стали применяться флуоресцентные зонды (ФЗ). ФЗ связываются не со всей мембраной, а только с определенными для каждого ФЗ ее участками. Если в участке связывания происходит изменение заряда, микровязкости или информации, то зонд реагирует на них изменением флуоресценции. В сравнении с другими оптическими методами флуоресценция менее чувствительна к светорассеянию, а флуориметры более доступны для парамагнитных зондов, чем спектрометры ЭПР.

В настоящее время имеется много данных о применении десятков флуоресцентных зондов для изучения самых разнообразных модельных и изолированных мембран, а также интактных клеток.

