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Abstract. It is shown that the wave functions ofthe left and right scattering problems can be used as a base for 

description of a wave process evolution. It is proved that for a same value energy these wave functions are 

orthogonal to each other. In general form the normalization of the scattering wave functions is done. The well-

known result of the transfer matrix is generalized for the case of a complex potential.  
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Introduction 

 In this workwe discuss the wave evolution problem on the base of matter waves 

propagating in a one-dimensional non-regular media with time independent parameters 

describing by means of ( )U x potential energy. It is known that for matter waves any wave 

process should take place in accordance with the one-dimensional time dependent 

Schrödinger equation [2];  

2 2

2

( , ) ˆ ˆ( , ), ( ).
2

x ti H x t H U x
t m x

∂Φ ∂= Φ = − +
∂ ∂


                                 

(1) 

Espect to this equation the function  ( , )x tΦ  should satisfy to the condision: 

* *
0 0( , ) ( , ) ( ) ( ) 1x t x t dx x x dx

∞ ∞

−∞ −∞

Φ Φ = Φ Φ =  ,                                    (2) 

where 0 ( ) ( ,0)x xΦ = Φ  is a form of a wave perturbation for a time initial moment. 

 An important class of solutions of Eq.(1) is so-called stationar solutions when the time 

dependancehas the form of: 

2

( , ) ( , )exp
2

kx t x k i t
m

ϕ  
Φ = − 

 


,                                                  (3) 

where the function ( , )x kϕ  is a solution of an one dimensional  Schrödinger stationar 

equation; 

2
2

2

( , )
( ) ( , ) 0,

d x k k u x x k
dx

ϕ ϕ + − =   

where 2 /k mE=  , 2( ) 2 ( ) /u x mU x=   and E  is a total energy. Futher, we will  suggest 

that ( ) 0u x →  when x → ±∞ . 
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The last equation can have two types of solutions corresponding to the finite and infinite 

motions. For a finite  motion (bound states), when an energy takes certain negative values 

2 2
nk χ= − and a wave function ( , ) ( , ) ( )n nx k x i xϕ ϕ χ ϕ= = vanishes for x → ±∞ then it can be 

written: 

*( ) ( )n n nnx x dxϕ ϕ δ
∞

′ ′
−∞

= ,                                                     (5) 

where nnδ ′  is Kronecker symbol. Note that a bound state can be considered as a real function 

accurate to an exponential factor. 

 For infinite motions the normalization of wave functions in the form of Eq.(2) can not 

be done. For this case a wave function is normalized to delta-function; 

( , ) ( , ) ( )x k x k dx k kϕ ϕ δ
∞

−∞

′ ′− = − .                                              (6) 

where ( , )x kϕ −  is a conjugate function of ( , )x kϕ which is obtained from ( , )x kϕ by changing 

of a sign of a wave number k  to opposite. The conjugate function, which is obtained from 

( , )x kϕ  by means of non algebraic, is a solution of Schrodinger equation as well [3,4]; 

2
2

2

( , )
( ) ( , ) 0

d x k k u x x k
dx

ϕ ϕ±  + − ± =  .                                       (7) 

For a real potential ( )u x  the function ( , )x kϕ − can be considered asa complex conjugate of 

( , )x kϕ . 

 Any solution of Eq. (4) corresponding to an infinite motion is defined up to two 

constants which are given in its asymptotic behavior, i.e. an asymptotic behavior defines a 

solution. So, in general, the asymptotic behavior can be written: 

exp{ } ( ) exp{ }, ,

( ) exp{ } exp{ }, ,
( , )

a ikx b k ikx x
c k ikx d ikx x

x kϕ
+ − → −∞

+ − → +∞
= 


                                (8) 

where ,a d  are given quantities and ( ), ( )b k c k  should be found. If 0k > then ,a d are 

amplitudes of converging or incoming waves  and ( ), ( )b k c k  are amplitudes of deverging or 

outcoming waves. As it follows from Eq. (8), the function ( , )x kϕ −  satisfies to the following 

condition: 

 
exp{ } ( ) exp{ }, ,

( ) exp{ } exp{ }, .
( , )

a ikx b k ikx x
c k ikx d ikx x

x kϕ
− + − → −∞

− − + → +∞
− = 
                            

(9) 

Now for this solution the given quantities ,a d are the amplitudes of deverging waves and 

unkown quantities ( ), ( )b k c k− − are amplitudes of converging waves. In accordance with the 
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above mentioned the functions ( , )x kϕ and ( , )x kϕ −  are called the coverging and deverging 

solutions of stationar wave equation.  

 Below  we consider wave processes constructed on the base of wave functions 

corresponding to theinfinite motion: 

2

( , ) ( ) ( , ) exp ,
2

kx t k x k i t dk
m

ν ϕ
∞

−∞

 
Φ = − 

 




                                        
(10) 

where ( , )x kϕ has an asymptotic behavior Eq.(8). It is easy to check that when ( , )x kϕ  is 

normalized as Eq. (6) and 

( ) ( ) 1k k dkν ν
∞

−∞

− = ,                                                      (11) 

then ( , )x tΦ  satisfies to the condition (2). So, for consideration of a wave process Eq. (10) 

based of the wave functions of an infinite motion Eq. (8) it is improtant that these functions to 

be exactly normalized on delta-function. Below we consider a problemhow the wave 

functions of an infinite can be normalized on delta-function. 

 

2. Normalization of the wave functions of an infinite motion 

 

Let us consider the Wronskian of Eq. (4); 

[ ]1 2
2 1

1 2( , ), ( , )
( , ) ( , )

( , ) ( , )W x k x k
d x k d x kx k x k

dx dx
ϕ ϕϕ ϕ ϕ ϕ= =  −  

,                  (12) 

where 1 2( , ), ( , )x k x kϕ ϕ  are independent solutions of Eq. (4) corresponding to the same 

magnitude of 2k . So, one can choose as independent solutions the converging and diverging 

solutions Eq. (8), Eq. (9); 

1 2( , ) ( , ), ( , ) ( , )x k x k x k x kϕ ϕ ϕ ϕ= = − .                                               (13) 

 It is well known that for any two solutions the Wronskian does not depend on x  [2]; 

( )W x const= or ( ) / 0dW x dx = . 

The given property of the Wronskian can be presented as well: 

( ) ( ) 0.W x W x→ +∞ − → −∞ =                                             (14) 

 From Eq. (12) – Eq. (14) and Eq. (8), Eq. (9) one can get 

2 2 ( ) ( ) ( ) ( )a d b k b k c k c k+ = − + − ,                                         (15) 

which means that the sums of intensities of converging and diverging waves equal to each.  

 Let us consider the following identity: 
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2 1
1 2 1 22 2

( , ) ( , )1
( , ) ( , ) ( , ) ( , )

d x k d x kdx k x k x k x k
k k dx dx dx

ϕ ϕϕ ϕ ϕ ϕ
′− ′ ′− = − − ′−              

(16) 

or 

2 1
1 2 1 22 2

( , ) ( , )1
( , ) ( , ) ( , ) ( , ) .

L

L

L

L

dx
d x k d x kx k x k x k x k

k k dx dx
ϕ ϕϕ ϕ ϕ ϕ

− −

′− ′ ′− = − − ′−  
      

(17) 

where 1( , )x kϕ  and 2 ( , )x kϕ ′−  are arbitrary converging and diverging solutions of Eq. (4) (see 

Eq. (7)). 

 Using the asymptotic forms of converging and diverging solutions Eq. (8) and Eq. (9), 

from Eq. (17) it can be written: 

[ ] [ ]

[ ] [ ]
1 2 1 2

3 4

sin ( ) cos ( )
( , ) ( , ) ( , ) ( , )

sin ( ) cos ( )
( , ) ( , ) ,

L

L

dx
k k L i k k L

x k x k v k k v k k
k k k k

k k L i k k L
v k k v k k

k k k k

ϕ ϕ
−

′ ′− −
′ ′ ′− = + +

′ ′− −
′ ′+ +

′ ′+ +
′ ′+ +



            (18)

 

where 

1 1 2 1 2 1 2 1 2( , ) ( ) ( ) ( ) ( )v k k b k b k c k c k a a d d′ ′ ′= − + − + + ,                            (19) 

2 1 2 1 2 1 2 1 2( , ) ( ) ( ) ( ) ( ) ,v k k b k b k c k c k a a d d′ ′ ′= − + − − −                             (20) 

3 1 2 1 2 2 1( , ) ( ( ) ( )) ( ( ) ( ))v k k a b k b k d c k c k′ ′ ′= ⋅ − + + ⋅ − + ,                           (21) 

4 2 2 1 2 2 1( , ) ( ( ) ( )) ( ( ) ( )),v k k a b k b k d c k c k′ ′ ′= ⋅ − − + ⋅ − −                           (22) 

where 1 1, ,a d 1 1( ), ( )b k c k and 2 2, ,a d 2 2( ), ( )b k c k′ ′− −  are the corresponding amplitudes of the 

solutions 1( , )x kϕ  and 2 ( , )x kϕ ′− . 

 For very large values of L  the left part of the equality (18) contains fast oscillating 

factors in the following forms: 

[ ] [ ]sin / , cos /yL y yL y ,                                                 (23) 

where y k k′= −  or y k k′= + .The both functions [ ]sin /yL y  and [ ]cos /yL y   always tend to 

zero when L → ∞  for all values of 0y ≠ .  
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Fig.1. Functions  [ ]sin /yL y  (dashed line) and [ ]cos /yL y  (continuous line) at 7.L =  

 

The function [ ]sin /yL y  is an even function and for the value 0y = when L → ∞  it tends to

.+∞ The function [ ]cos /yL y  is an odd function, whose value for 0y =  is uncertain. When 

0y → +  then [ ]cos /yL y  tends to +∞  and for the case of 0y → −  this function tents to −∞ . 

Note that the functions Eq. (23) as generalized functions, 

sin[ ] /
∞

−∞

= yL ydy π  and [ ]cos 0yL y dy
∞

−∞

= , 

are (see for example [2]): 

[ ]sin / ( )yL y yπδ=  and [ ]cos / 0yL y = .                                       (24) 

Since , 0k k′ >  then for the case y k k′= +  the quantity 0y ≠  so [ ]sin / 0yL y = . It means that 

in Eq. (24) y k k′= −  can be considered. 

 Using Eq. (24), from Eq. (18) it can be written: 

1 2 1 2 1( , ) ( , ) lim ( , ) ( , ) ( , ) ( )
L

L
L

dx dxx k x k x k x k v k k k kϕ ϕ ϕ ϕ π δ
∞

−∞ −
→∞

′ ′ ′− = − = −  .     (25) 

When 1 2( , ) ( , ), ( , ) ( , )x k x k x k x kϕ ϕ ϕ ϕ′ ′= − = − are chosen, then by using Eq. (15), Eq. (19) from 

Eq. (25) it can be written as 

2 2( , ) ( , ) 2 ( ) ( )dxx k x k a d k kϕ ϕ π δ
∞

−∞

′ ′− = + − .                            (26) 

This formula defines a normalization of wave functions of any asymptotic behavior. 

 As it follows from Eq. (26), for any a  and d  a solution of Schrodinger equation 

written as 2 2( , ) ( , ) / 2 ( )x k x k a dψ ϕ π= + will be normalized to δ  function; 

�2 �1 1 2
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2 2

exp{ } ( ) exp{ }, ,

( ) exp{ } exp{ }, ,

1
( , )

2 ( )

a ikx b k ikx x
c k ikx d ikx x

x k
a d

ψ
π

+ − → −∞

+ − → +∞
= 
+                       

(27) 

( , ) ( , ) ( )dxx k x k k kψ ψ δ
∞

−∞

′ ′− = − .                                       (28) 

So, we proved that the normalisation constant for an arbitrary solution is presented by means 

of constants expresing its asymptotic behavior. It means that this constant does not depend on 

a  scattering potential form. 

3. The left and right scattering functions 

 The scattering process corresponds to an infinite motion. The asymptotic behaviors of 

the wave functions describing the left and right scattering problems can be written from Eq. 

(8). So, if 1, 0a d= =  then  

( , )( , ) left x kx kψ ψ= and ( ) ( )b k r k= , ( ) ( )c k t k= .                          (29) 

and when 0, 1a d= =  then 

( , )( , ) right x kx kψ ψ= and ( ) ( )b k s k= , ( ) ( )c k p k= .                          (30) 

From Eq. (27) - Eq. (30) for the asymptotic behaviors of the normalized wave functions of left 

and right scattering problems one can write: 

( , )
exp{ } ( ) exp{ }, ,1

( )exp{ },2
left x k

ikx r k ikx x
t k ikx x

ψ
π

=
+ − → −∞

 → +∞                           
(31) 

and 

( , )
( ) exp{ }, ,1

exp{ } ( )exp{ }, ,2
right x k

s k ikx x
ikx p k ikx x

ψ
π

=
− → −∞

 − + → +∞                           
(32) 

where ( )t k , ( )r k  and ( )s k , ( )p k  are the transmission and reflection amplitudes of the left 

and right scattering problem, correspondingly. It is important to note that 0k >  must be 

considered. 

 In accordance with Eq. (31), Eq.(32) the conjugate functions for solutions ( , )left x kψ  

and ( , )right x kψ   have to passess asymptitic behaviors in the forms of: 

( , )
exp{ } ( ) exp{ }, ,1

( ) exp{ },2
left x k

ikx r k ikx x
t k ikx x

ψ
π

− =
− + − → −∞

 − − → +∞                         
(33) 

and  

( , )
( ) exp{ }, ,1

exp{ } ( )exp{ }, .2
right x k

s k ikx x
ikx p k ikx x

ψ
π

− =
− → −∞

 + − − → +∞                         
(34) 
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( ) ( ) ( ),W x t k p k→ +∞ = − ( ) ( ) ( )W x r k s k→ −∞ = − −  

hence from Eq. (14) one gets: 

( ) ( ) ( ) ( ) 0.kp t k r k s k− + − =                                               (41) 

 For the case of 4W W=  by using Eq. (31), Eq. (32) it can be written as  

( ) ( ),W x t k→ +∞ = ( ) ( )W x s k→ −∞ =  

so that from Eq. (14) one can obtain: 

( ) ( )t k s k= .                                                           (42) 

 Equations (39)-(42) are well known and they lay on a base of the transfer matrix 

method [1,4]. In particular, the last equation means that the transmission amplitudes of the left 

and right scattering problems coincide with each other. The basic relations (39)-(42) are 

usually derived in a framework of group theory [1]. It is obvious that the above suggested 

appoach is more transparansive.  

 For any values of ,a d  the function , )(x kψ Eq. (27) can be presented by means of a 

linear combination of  ( , )left x kψ  and ( , )right x kψ  (see Eq. (31)); 

2 2
( , ) ( , )

1
( , )

( )
left righta x k d x kx k

a d
ψ ψ ψ= +  +

.                            (43) 

Using Eq. (27) and Eq. (31), Eq. (32), from Eq. (43) one gets the well-known connection 

acting between the amplitudes of diverging and converging waves [1]; 

( ) ( ) ( )c k t k a p k d= + , ( ) ( ) ( )b k r k a s k d= +                                  (44) 

or  

( ) ( ) ( )ˆ ˆ,
( ) ( ) ( )

,
c k a t k p k

S S
b k d r k s k

= =
     
     
     

 

where Ŝ  is called a scattering matrix. 

 

4. The scattering wave functions as a base for description of a wave process evolution  

 
 Let us consider a wave process constructed by means of the scattering functions; 

2

0

( , ) [ ( ) ( , ) ( ) ( , )]exp
2left left right right
kx t k x k k x k i t dk
m

ν ψ ν ψ
∞

Φ
 

= + − 
 




,          (45) 

where ( )left kν , ( )right kν define the spectum of a wave process ( , )x tΦ  in a base of the functions 

( , )left x kψ , ( , )right x kψ . Now we have to prove that if  
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( ) ( ) ( ) ( ) 1left left right rightk k k k dkν ν ν ν
∞

−∞

 − + −  = ,                                        (46) 

then for the function ( , )x tΦ Eq. (45) the condition (2) takes place or which is the same as:  

0

( ,0) ( ,0) ( ) ( ) ( ) ( ) 1.left left right rightx x dx k k k k dkν ν ν ν
∞ ∞

∗

−∞

 Φ Φ = − + − =  
                  

(47) 

So as it follows from Eq. (27) and Eq. (29), Eq. (30) can be written: 

( , ) ( , ) ( ), ( , ) ( , ) ( )left left right rightx k x k dx k k x k x k dx k kψ ψ δ ψ δψ
∞ ∞

−∞ −∞

′ ′ ′ ′− = − − = −  .      (48) 

 For implementation of Eq. (47), it is nessesary to show that the left and right scattering 

functions are orthogonal with respect toeach other; 

( , ) ( , ) 0left rightx k x k dxψ ψ
∞

−∞

′− = .                                          (49) 

It is easy to see that Eq. (49) directry follows from Eq. (25) and Eq. (19). Indeed, for this case 

when 1 2( , ) ~ ( , ), ( , ) ~ ( , )left rightx k x k x k x kϕ ψ ϕ ψ− − due to the equalities (see Eq. (29)) 

1 1 1 11, 0, ( ) ( ), ( ) ( )a d b k r k c k t k= = = =  

and (see Eq.(30))   

2 2 2 20, 1, ( ) ( ), ( ) ( )a d b k s k c k p k= = = =  

For the quantity 1( , )v k k  one gets: 

1( , ) ( ) ( ) ( ) ( ).v k k r k s k t k p k= − +  

It follows from Eq. (41) that 1( , ) 0v k k = . So, we have proved that the property (49) takes 

place. 

 By using Eq. (48), Eq. (49), from Eq. (45) for the spectral ( )left kν , ( )right kν  one can 

write: 

( ) ( ,0) ( , )left leftv k x x k dxψ
∞

−∞

= Φ − , ( ) ( ,0) ( , ) .right rightv k x x k dxψ
∞

−∞

= Φ −
           

(50) 

 The obtained result shows that the set of the functions ( , ), ( , )left rightx k x kψ ψ is a full 

orthogonal one, so it allows to conduct a performance of different wave processes with а 

required asymptotic behavior. So, on the base of the expansion (45) one can consider an 

evolution of a wave process starting as a solitary wave falling to a potential from its left, the 

right side or from the both sides. The last case is more interesting one because of the bound 

states can be considered and obtained as an evaluation result of wave packets. 
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Conclusion 

 Thus, we have proved that a system of wave functions of the left and right scattering  

problems has the completeness property for description of  the matter wave evolution. For any 

form of an infinite motion, the normalization of the wave function is done.  

The generalization of the well-known formulas of the transfer matrix method is done 

[1]. It is shown that for a case of a complex potential the action of the complex conjugation 

for the scattering amplitudes is changed to the action of alteration of the wave number sign.   

The approach of quantum wave description, as it is presented in the subject work, can 

be permeated on linear waves with different species as well. In particular, it can be 

electromagnetic waves, hydro waves, the waves in the solid states, and etc. Application of the 

results deriving from this work is notably wide and it is able to find its utilization in different 

areas of natural sciences in the nearest future.  
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