${}^{16}O \rightarrow {}^{8}Be + {}^{8}Be$ Decay Simulation

A. Gyurjinyan

Experimental Physics Division, Yerevan Physics Institute, Yerevan, Armenia, 0038 Physics Department, University of Notre Dame, IN, USA, 46556

E-mail: garmen@mail.yerphi.am

Receved 05 February 2016

Abstract. The fact that the ⁴He is one of the most strongly bound nuclei led to the discovery of α clusters models in the nuclei. It is so stable that remains as a cluster in the ¹²C, ¹⁶O, ²⁰Ne, etc. The nuclei that for α -clusters called α -conjugate nuclei. ¹³C (⁴He, n) reaction was used to study α cluster states in the ¹⁶O excited levels. The measurements will improve knowledge of possible linear α -chain structure in ¹⁶O. In this work, we will present angular distribution simulation results with Geant4 for ¹⁶O-excited levels that were measured in the Ref. [8]. The simulated results will be used later on experimental data analysis that was carried out at the University of Notre Dame.

Keywords: Angular distribution, Geant4 simulation, α-cluster

1. Introduction

After the Big Bang only light nuclei (H, He and Li) were created. This nucleus has become a building block for synthesis of higher mass elements. The α -nucleus as a cluster component has been identified in α -conjugate nuclei that is nuclei with equal and even number of proton and neutrons. The special stability of the α nucleus or clusters of α particles continue to persist in heavier nuclei such as ¹²C, ¹⁶O, ²⁰Ne, ²⁴Mg and others [1]. Besides that ⁴He is noble gas and interacts very weakly, first excited state of this nucleus is around 20 MeV. The binding energy of this nucleus is also very high compare to nearby nuclei [2]. Addition to this α - α strong and repulsive interaction coming from Pauli exclusion principle [3, 4], made α -cluster model. During 1960s multiply studies were done to revival the model [5, 6] and eventually in 1968 Ikeda suggested the structure of α clusters in the α -conjugate nuclei excited states [7]. One of the best example of nucleus that forms α -cluster is ¹⁶O. Numerous experiments with

One of the best example of nucleus that forms α -cluster is ¹⁶O. Numerous experiments with different methods were done [1, 8-10] to study α cluster components in the structure of ¹⁶O. This aspect of the ¹⁶O structure is relevant for α -burning reactions thought to play a significant role in stellar evolution.

¹³C(⁴He,n) reaction was used to produce ¹⁶O at the University of Notre Dame Nuclear Science Laboratory with 10.5 MV FN Tandem. Beam energy was in the range from 24 MeV to 29.2 MeV so the created ¹⁶O will be above 4α breakup level. In that levels ¹⁶O can decay with following channels: ¹⁶O→⁸Be+⁸Be, ¹⁶O→¹²C+⁴He or ¹⁶O→4 ⁴He. The measurements help to reveal the possible linear α-chain structure in ¹⁶O. More details of the experimental results will be published.

Following paper shows the results for ${}^{16}O \rightarrow {}^{8}Be + {}^{8}Be$ channel simulations with Geant4 [11]. This simulations will be used to do angular momentum assignment. As isotropic distribution of ${}^{16}O$ was simulated it would be possible to find the states with 0^+ angular momentum.

2. Simulation Method

Four 32 by 32 Double-sided Silicon Strip Detectors (DSSD) were used to measure charged particles energies and positions. DSSD were located symmetrically to beam direction. The detectors centers were 13 cm and 12 cm away from target with 23.8^o and 57.3^o angles relative to beam direction, respectively. It is important to use correct physics list in Geant4 simulations as well. In those simulations were used already existing "Shillding.hh" physics list [12]. That physics list includes best-guess selection of electromagnetic and hadronic physics processes.

As the goal is to study angular distribution of ¹⁶O which breaks-up with ¹⁶O \rightarrow ⁸Be+⁸Be channel

after ¹³C(⁴He, n) reaction, the ¹⁶O direction was randomized and picked up only the angles in which case all four α -particles were detected in the detectors.

¹⁶O and neutron will have opposite directions in the center of mass frame as it is two body reaction. Angle between the ¹⁶O and beam directions is center of mass θ angle. After randomizing ¹⁶O direction the angle also will be random.

The energy approximation was done and non-relativistic case was used due to nuclei low energies. Energy and momentum of ¹⁶O was calculated with the energy and momentum conservation laws after randomizing the angle.

The angular distribution should be *sine* function, due to solid angle dependence from center of mass frame θ angle (Eq. 1).

$$d\Omega = \sin(\theta) d\theta d\varphi \tag{1}$$

Comparison of isotropically simulated one million ¹⁶O angles and solid angle function shown in Fig. 1. Constant "A" is the value when the angle was equal 90^0 so the *sine* function will be equal to one.

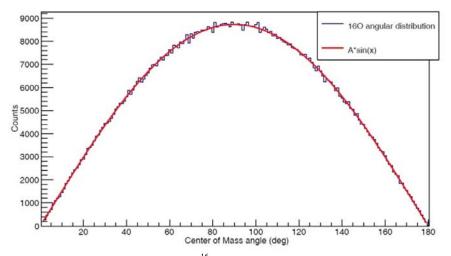


Fig. 1. Isotropically angular distribution of ¹⁶O comparison with $A^*sin(x)$ function. Where A is a constant and equal to value of distribution when $x=90^0$.

Initial particles in the Geant4 were simulations after ¹⁶O direction generation. In place of ¹⁶O, two ⁸Be should be generated.

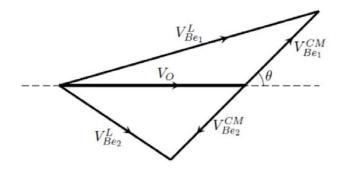


Fig. 2. Velocities diagram of ¹⁶O and two ⁸Be in the laboratory and center of mass frames.

In the ¹⁶O related frame, ¹⁶O will be in rest and two ⁸Be will breakup with the same energy in opposite directions. In the laboratory frame ¹⁶O, on the other hand, has a kinetic energy. So, again ¹⁶O momentum and ⁸Be center of mass momentum can form any angle, because ¹⁶O can breakup isotropically. Generating random angle in this case as well, ⁸Be momentum direction was calculated in the center of mass. Fig. 2 shows the diagram of ¹⁶O and two ⁸Be velocity diagram in the center of mass and laboratory frames. The vectorial sum of ¹⁶O and ⁸Be center of mass velocities will be equal to ⁸Be velocity in the laboratory frame:

$$V_{Be_1}^L = V_0 + V_{Be_1}^{CM}; V_{Be_2}^L = V_0 + V_{Be_2}^{CM}$$
(2)

Initial energy of ⁸Be in the center of mass frame can be calculated from excitation energy and Q-value of reaction which is Q = 14.62 MeV. As ¹⁶O will be in rest in its frame, each ⁸Be will get equal energy shown below:

$$E_{s_{Be}} = \frac{E_x + Q}{2} \tag{3}$$

With the Eq. 3, the kinetic energy can be calculated for each ⁸Be after ¹⁶O breakup. In the laboratory frame each ⁸Be velocity can be calculated with equations below:

$$(V_{Be_1}^L)^2 = (V_0)^2 + (V_{Be_1}^{CM})^2 + 2V_0 V_{Be_1}^{CM} \cos(\theta)$$
(4)

$$(V_{Be_2}^L)^2 = (V_0)^2 + (V_{Be_2}^{CM})^2 - 2V_0 V_{Be_2}^{CM} \cos(\theta)$$
(5)

After calculating each ⁸Be energy and momentum direction in the laboratory frame with the Eq. 4 and Eq. 5, both ⁸Be were simulated. Then ⁸Be will breakup into two α -particles.

3. Results

The nucleus in the 0^+ excited level after decays emits particles isotropically. In the simulation initial ¹⁶O were generated isotropically, so after comparison can be predicted which states have 0^+ spin and parity. On the other hand, in the experimental results except from the channel of interest, ¹⁶O can breakup with other channels as well and even after gates there still will be some residual background. That background, as well, will be distributed isotropically. So following simulations will help to subtract residual background, increase precision for angular distribution, and spin assignment.

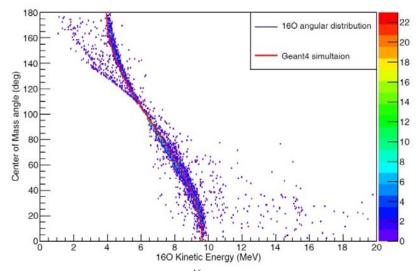


Fig. 3. Comparison of simulated and experimental ¹⁶O kinetic energy and center of mass angle dependences.

First of all the kinematics of the simulation should be checked to be sure that the results from the simulation produce correct results. The simplest case is ¹⁶O kinetic energy and center of mass angle relation, which can be calculated from any kinematic calculator.

The comparison of the experimental and simulated kinetic energy distributions is shown in the Fig. 3. In this case, 1 million ¹⁶O were generated, but it was made a smooth line. The comparison shows that the simulated angular distribution match with the experimental distribution very well. Therefore, the kinematics in the simulation works correct.

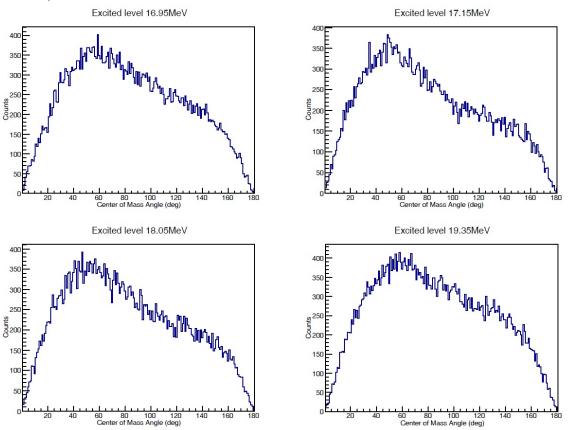


Fig. 4. Isotropic simulations for each excited energy level from Ref. [8]. Initially 1 million ¹⁶O were generated.

Fig. 4 shows the angular distribution simulation for 4 excited levels. Again, in these simulations 1 million ¹⁶O were generated initially for all levels. All states angular distributions have very similar structure, as for all of them ¹⁶O were generated isotropically. The angular distribution of the state depends only from the spin and parity and does not depend on excited level energy.

4. Conclusion

The Geant4 simulation code is ready to be used. The simulation results will help to do important calculations during experimental data analysis. First of all, it will make possible to identify the excited levels with 0^+ spin and parity. Besides, it will make possible to produce isotropic background and do the experimental background subtraction.

Acknowledgement

This work was supported by the National Science Foundation under contract number NSF PHY-1419765. The author would like to thank everyone who took part in the experiment.

References

- [1] M. Freer et al., Phys. Rev. C 83, 034314 (2011).
- [2] L. R. Hafstad and E. Teller, Phys. Reve. 54, 681 (1938).
- [3] O. Endo, I. Shimodaya, J. Hiura, Prog. Theor. Phys. 31 1157 (1964).
- [4] I. Shimodaya, R. Tamagaki, H. Tanaka, Prog. Theor. Phys. 27 793 (1962).
- [5] J. Hiura, I. Shimodaya, Prog. Theor. Phys. 30 585 (1963).
- [6] R. Tamagaki, H. Tanaka, Prog. Theor. Phys. 34 191 (1965).
- [7] K. Ikeda, N. Tagikawa, H. Horiuchim, Prog. Theor. Phys. (Suppl 1) (1968).
- [8] P. Chevallier, F. Scheibling, G. Goldring, I. Plesser, M. W. Sachs, Phys. Rev. 160, 827 (1967).
- [9] E. B. Carter, G. E. Mitchell and R. H. Davis, Phys. Rev. 133, B1421 (1964).
- [10] G. E. Mitchell, E. B. Carter and R. H. Davis, Phys. Rev. 133, B1434 (1964).
- [11] geant4.web.cern.ch/geant4/
- [12] www.slac.stanford.edu/comp/physics/geant4/slacphysicslists/shielding/physlistdoc.html