- 4. Canvin D. T., Evans L. E. Canad. Journ. of Plant Sc., 43, 419-421, 1963.
- 5. Canvin D. T., Jao J. T. Canad. Journ. of Botany, 45, 757-772, 1967.
- 6. Canvin D. T., Mc. Vitty P. B. E. Euphytica, 25, 2, 471-483, 1967.
- 7. Hermsen 1. G. Euphytica, 16, 1, 134-162, 1967.
- 8. Moore K. Euphytica, 15, 3, 329 -- 347, 1966.
- 9. Moore K. Euphytica, 18, 2, 190-204, 1969.
- Piech J. Euphytica, 17, Suppl., 153-170, 1968.
 Worland A. J., Law C. N. Z. Pflanzenzüct, 85, 1, 28-39, 1980.

«Биолог. ж. Армении», т. XXXV, № 12. 1982

УЛК 581.4+576.8.0,95.337

НЗМЕНЕНИЕ СОДЕРЖАНИЯ МАРГАНЦА В ЛИСТЬЯХ И ПОБЕГАХ ВИНОГРАДНОГО РАСТЕНИЯ В ЗАВИСИМОСТИ ОТ ЯРУСА И РЕЖИМА МИНЕРАЛЬНОГО ПИТАНИЯ

А. Б. АФРИКЯН

Впервые в Армении исследовалось влияние макроэлементов на содержание марганца в листьях и побегах вичоградного растения.

Обнаружено, что совместное действие азота, фосфора и калия способствует наиболее полному использованию марганца органами виноградного растения.

Ключевые слова: микроэлементы, марганец, виноградное растение.

Сведения о комбинированном действии макроэлементов на содержание микроэлементов в различных органах виноградного растения в зависимости от фаз вегетации и ярусов для Армении совершенно отсутствуют.

Нами исследовалось влияние удобрений на содержание марганца в листьях и побегах виноградного растения по ярусам в динамике вегетании.

Материал и методика. Исследования проводились в лабораторных и полевых условиях в течение 1971—1976 гг. на Мердзаванской экспериментальной базе Института виноградарства, виноделия и плодоводства МСХ АрмССР. Почва опытного участка бурого типа, бедна гумусом, в верхних горизонтах его количество не превышает 1,07%. Почвенная среда щелочная (рН 8,3), что обусловлено наличием карбонатов щелочноземельных металлов. Содержание связанного CO_2 варьирует в пределах 1,03—11.38%, а СаСО -- 2,34--25,88%. Количество гипса в верхних горизоплах небольшое (0.24%), а в пижних—значительное (23.02%). Содержание азота и $- \frac{1}{2}$ ОСфора инзкос. По механическому составу относится к тяжелосуглинистым.

Исследовался сорт Кахет (виноградники посадки 1960 года). Густота посадки — 1,5×2,5 м. Нагрузка кустов-по силе роста. Опыты проводились в трехкратной повторности, по 25-30 кустов в каждой, с одним защитным рядом. Удобрения вносились весной, по 100 кг/га действующего начала основных элементов питания. Схема оныта: контроль (без удобрення), с NK, NP, PK, NPK. Отбор и фиксация образцов для анализа проводились согласно общепринятой методике [1]. Образцы после озоления исследовались спектрографически [2]. Пересчет микроэлементов сделан в мг/кг абсолютно сухого материала.

Результаты и обсуждение. Согласно полученным данным (табл.) макроэлементы оказывают большое влияние на содержание марганца глистьях и побегах виноградного растения. В листьях нижнего яруса количество его у всех удобренных растений значительно выше, чем в побегах, т. е. основная закономерность, отмеченная нами ранее для кон

Таблица Влиянне минерального питация на содержание марганца в листьях и побегах виноградного растения, мг/кг сухой массы

	Листья						Побеги				
Ярус	Фаза веге- тации варианты опыта	До цвете- ния	Цветение	Формиро- вание и рост ягод	Начало созревания ягод	физнологи- ческая зре- лость ягод	До циете- ния	Цветение	Формиро- вание и рост ягод	Начало созревания ягод	физнологи-
няжний	O	37,6	39,6	86,7	41,4	46,3	5,8	16,5	31.0	10,21	10,0
	NP	66,3	48,3	33,0	42,8	49,3	17,4	16,8	14.7	14,6	11,3
	NK	61,7	51,4	45,3	35,7	49,7	6,1	18,0	22.3	13,5	12,2
	PK	76,9	74,6	56,4	45,5	52,9	6,0	16,6	19.6	10,8	11,4
	NPK	18,6	19,1	56,7	15,9	44,7	5,6	10,6	16.8	9,0	8,3
ниодоли	O	52,2	27.8	48,4	41,1	35,8	12,3	8,1	20,0	16.3	11,2
	NP	56,2	36.2	32,2	43,7	33,0	20,6	12,3	14,1	12,3	11,9
	NK	26,1	29.7	35,0	23,4	35,6	4,2	9,2	12,3	10.6	16,2
	PK	23,2	46.2	42,3	36,7	43,4	6.7	10,4	15,2	13.9	12,7
	NPK	11,0	12.9	37,9	26,6	33,7	5,5	8,4	15,0	10.8	14,1
средний	O	49,5	24,0	47,5	42,4	41,3	18,6	8,3	22.0	21,9	14,2
	NP	25,1	11,1	72,7	28,0	39,2	7,2	7,3	15,8	13,2	10,5
	NK	49,9	22,2	28,3	36,9	44,8	5,6	6,8	21,8	19,3	15,3
	PK	27,4	37,9	34,8	33,6	48,5	15,3	9,5	24,8	14,4	16,6
	NP K	11,8	5,3	45,0	33,4	38,6	5,1	5.9	18,9	15,5	11.6
верхний	O NP NK PK NPK	33,7 16,7 26,9 27,3 8,4	19,8 47,2 44,6 49,0 3,6	49.4 30.7 106.5 137,2 43,3	27,5 34,9 29,1	52,1 34,0 32,3 36,0 31,7	26,0 22,1 20,3 24,0 20,2	19,1 20,5 16,5 13,4 18,3	32,1 29,9 27,7 35,8 21,9	29,9 22,7 26,9 21.0 19,5	27,6 21,5 28,7 43,8 25,1

трольных лоз, сохраняется [3]. В вариантах с NP, NK и PK до и во время цветения наблюдается повышение содержания марганца в листьях более чем на 50% по сравнению с контролем. Максимальное накопление его наблюдается у растений варианта с PK до и в период цветения, где его количество увеличивается на 150%. Повышенное содержание марганца от внесения PK сохраняется в фазе созревания и в период физиологической зрелости ягод.

Интересен период формирования и роста ягод. У всех удобренных растений как в листьях, так и в побегах обнаруживается понижение содержания марганца по сравнению с контролем, что, видимо, связано с интенсивным потреблением этого микроэлемента на рост и формирование урожая.

Количество марганца в листьях и побегах нижнего яруса (табл.) виноградного растения в начале созревания и в период физиологической зрелости ягод примерно одинаковое, за исключением растений варианта с NPK, где во все исследованные сроки содержание его меньше по сравнению с контролем. Нами обнаружено, что при азотно-фосфорном пита-572

нии (NP) в фазе до цветения повышается количество марганца в нижнем ярусе побега (примерно в 3 раза по сравнению с контролем), а в остальные периоды это повышение значительно меньше. Внесение удобрений в других комбинациях практически не влияло на количество марганца.

В листьях и побегах плодового яруса концентрация марганца у растений всех вариантов за исключением с NP понижена. В период цветения повышенное содержание его отмечается у растений, получавших NP, NK. PK. Во время интенсивного роста и в начале созревания ягод количество его убывает от контроля к NPK, повторяя картину нижнего яруса (табл.). В фазе физиологической зрелости ягод в побегах растений всех вариантов, даже с NPK, где всегда отмечалось невысокое содержание этого микроэлемента, количество его возрастает. В листьях же в этот период концентрация марганца носит выровненный характер, кроме растений варианта с РК. В среднем ярусе побега при внесении удобреший отмечается тенденция к убыванию количества марганца. Этот же эффект наблюдается в листьях и побегах верхнего яруса в период цветения. Внесение удобрений в виде сочетаний двух элементов NP, NK и PK приводит к увеличению содержания марганца в листьях в фазе цветения в 2,5 раза по сравнению с контролем. В период формирования и роста ягод в верхушечных листьях в отличие от листьев всех других ярусов отмечено более высокое содержание его у растений вариантов с РК, NK (в 2,5 раза по сравнению с контролем).

В побегах растений, получавших РК, содержание марганца увеличивалось позднее—в период физиологической зрелости ягод.

Таким образом, в наиболее ранний срок вегетации—до цветения основные запасы марганца сосредотачиваются в листьях плодового яруса.

В период цветения по всей длине побега виноградной лозы происходит интенсивное использование марганца. Совместное действие двух макроэлементов (NP, NK, PK) увеличивает запасы марганца в листьях нижнего яруса, а также в плодовой и в верхней зонах побега.

В варианте с РК в листьях всех ярусов содержание марганца максимальное. Видимо, недостаток азота тормозит использование марганца. Отсутствие одного из питательных элементов в удобрении как бы нарушает равновесную систему, и растение плохо усваивает накопившийся в листьях микроэлемент. В побегах же на протяжении всего вегетационного периода максимальное содержание марганца наблюдается в верхнем ярусе.

В период формирования и роста ягод указанный эффект проявляется только для листьев и побегов верхнего яруса.

В листьях и побегах на протяжении всей вегетации содержание марганца наименьшее по сравнению с контролем у растений, получавших NPK. Следовательно, удобрение азотом, фосфором и калием (NPK) приводит к наиболее полному и эффективному использованию марганца органами виноградного растения.

Ереванский государственный медицинский институт, кафедра биоорганической и биологической химин

Поступило 15.VI 1982 г.