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Abstract – The evolution problem of wave processes in a field of a one-dimensional potential of an arbitrary is 

considered. We consider the wave packets constructed on a base of linear combinations of the scattering wave functions 

which are taken with magnitudes of state indices near to resonance tunneling case. It is shown that the wave processes 

with different parities of asymptotes describe a same wave process for which the group and phase velocities have 

opposite direction. The conducted consideration allows to state that the bound states can be interpreted as wave packets 

of the scattering wave functions to be constructed under a certain way. 
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1. Introduction 

The problem of description of a wave process evolution for a media with arbitrary changing 

from point to point linear physical properties always aroused a great interest.  Despite an increase of 

a number of works devoting to this problem the interest to description of a wave process evolution 

does not decrease, more over it has tendency to increase. So, the practical problem of 

miniaturization and quickening of work parameters of different electronic and optoelectronic devises 

strongly connects with the wave problem. It is important to determine the structure and composite 

features of physical systems where a wave perturbation fast passes into a volume [1-7].  From the 

theoretical point of view this problem interest is motivated by the necessity of determination of 

quantity characteristics for a wave evolution process. A wave perturbation is an object of many 

degrees of freedom. In a uniform media case the propagation of a wave process can be characterized 

by means of two types of velocities, such as group and phase velocities. However, in the case of an 

inhomogeneous media a process quantity description is more complicated problem of fundamental 

character. So, it is well known the Hartman paradox about a tunneling time of a quantum particle 

passing through a potential barrier [8-16]. 
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 Further we will discuss the wave evolution problem on the base of matter waves propagating 

in a one-dimensional non-regular media with time independent parameters. It is known that for this 

case any wave process should take place in accordance with the one-dimensional time dependent 

Schrödinger equation [17];      
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where ( )U x  is a particle potential energy, which is suggested to be a function of a one space 

coordinate only. It is well known that the wave equation (1) has a unique solution if the wave 

function is a given one for any time moment. 

Considering a wave process staring with a moment 0t   a time evolution of a wave process 

can be presented by means of the following formula (see Appendix):    
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where ( ,0)x  is an initial form of a wave perturbation. In accordance with Eq. (2) the whole 

character of a wave evolution process is defined by an initial form of a wave excitation.  

A wave problem is defined by an initial form of a wave excitation ( ,0)x , which is given 

independently on a wave equation, namely, on the media parameters, which are presented in Eq.(1) 

by means of a potential energy ( )U x . Although in the wave problem the functions ( ,0)x  and 

( )U x  are formally independent for a correct statement of a physical problem a certain connection 

between them would take place. The physical statement of a problem suggests the following 

question availability: an evolution of what wave process is needed to consider. So, for one potential 

the given form of ( ,0)x can correspond to a wave process dominantly developing in a one 

direction, for another potential the given form of the initial perturbation can excite a wave process 

propagating in both directions and so on.   In other words from the mathematical point of view the 

functions ( ,0)x  and ( )U x ( )U x are independent, but from the point of view of the problem 

physical statement these functions are required to consider suggesting a certain connection between 

them. 

 Usually the initial form of a wave perturbation is given by mean of a spectral expansion of 

the function ( ,0)x on a base of some set of orthogonal functions. The most important and famous 

base of a spectral expansion is the Fourier expansion, which is done on the base of both harmonicon 

time and on a space coordinate functions; 
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exp{ ( ) / }iqx iE q t   

where 2 2( ) 2E q q m  . For this case  the expansion coefficients will be functions of t ; 
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where ( , )k t gives the expansion coefficients of the Fourier waves for different values of k . Note 

that the spectral composition of the Fourier waves in dependence on time are changed and the form 

of the initial perturbation ( ,0)x  is given by the magnitudes of the expansion coefficients at the 

initial moment of time: ( ,0)k .The dependence of the expansion coefficients on time is essentially 

complicates the physical statement of a problem since for many cases it does not allow predict the 

possible evolution of a wave process. So, one should choice such base of expansion that the 

expansion coefficients will not be depend of time.  

 It is clear that it can be in that case only when the expansion base is defined by the 

eigenfunctions of the Hamiltonian (see Eq. (1)). Considering 
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function ( , )x k  one can write down the stationary Schrödinger equation 
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where 2 /k mE  , 2( ) 2 ( ) /u x mU x  and E , ( )U x  are total and potential energies. So the 

problem of consideration of a wave process evolution is reduced to solution of Eq.(4). In accordance 

with the above mentioned for a wave process evolution one can write: 

 ( , ) ( ) ( , )exp{ ( ) / } .x t v k x k iE k t dk




     (5) 

Note that in contrast to Eq. (3)here the expansion coefficients ( )v k  do not depend on time due to 

expansion is done over the Hamiltonian eigenfunctions: ( , )x k . 

 

2. Some properties of solutions the stationary Schrödinger equation 

To use solutions ( , )x k of Eq. (4)for description of a wave process evolution these functions 

should be normalized and with respect to each other should be orthogonal in Hilbert space; 

 *( , ) ( , ) ( ) ,x k x k dx k k  



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It is easy to check that in this case expansion can be done only and the equality takes place: 
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Here the equality to unity is taken based on a physical mean of a wave functions. 

Further we will consider potentials with the lowest value coinciding with the values of a 

potential when x  and take it equals to zero; 

 ( ) 0.u x    (8) 

It is clear that for potentials of the form of Eq. (8)the energy spectrum is a continuous one and 

possible motions have an infinite character.  

The asymptotic behavior of the solutions of Eq. (4)when Eq. (8) for a potential takes place 

can be generally written  
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Here, as it was shown in paper [18], for any potential form of Eq. (8) the factor 
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provides the normalization condition of wave functions of an continues spectrum (see Eq. (6)). 

Note that when 0k the quantities ,a d  are being the amplitudes of the waves converging 

to a potential and ,b c are the amplitudes of the diverging waves. In Eq.(9) we suggest that the 

amplitudes of the converging waves are initially given quantities, therefore the amplitudes of the 

diverging waves depend on the parameter k .  

 

Fig. 1The schematic presentations of the left and right scattering problems. 
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If one takes in Eq. (9) 1a  , 0d   (a wave falls to potential from its left side and there is no 

wave falling on a barrier from the right side), then ( )c T k , ( )b R k will be the transmission and 

reflection amplitudes. Then the wave function ( , )x k of the asymptotic behavior Eq.(9) will 

describe or correspond to the left scattering problem; 
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For the right scattering problem (a wave falls to a potential from its right side only and there 

is no wave falling on a barrier from its left side) in Eq. (9)it should be taken 0a  , 1d  and

( )c P k , ( )b S k , so that 
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where ( )S k , ( )P k  are the transmission and reflection amplitudes of the right scattering problem. 

 It is well known that for the transmission and reflection amplitudes of the left and right 

scattering problems, the following relations take place (see, for example, [19]): 

 * * * *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1,T k T k R k R k S k S k P k P k     (13) 

 ( ) ( )T k S k , * *( ) ( ) ( ) ( ) 0P k T k R k S k   (14) 

Note that in Eq. (11), Eq. (12) the factor 1/ 2 is defined by Eq. (10) which provides the 

normalization condition of the scattering wave functions (see Eq. (6))). It is important to mention 

that the wave functions of asymptotes Eq. (11), Eq. (12)can be interpreted as scattering wave 

functions if only the parameter k  is considered as positive ( 0k  ) .  

It should be mentioned that the scattering wave functions are orthogonal with respect to each 

other as well (see, for example, [18]);  
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and 

*( , ) ( , ) 0left rightx k x k dx 




  .                                               (16) 

This properties of the functions ( , )left x k , ( , )right x k  are very important to describe different wave 

processes by means of a linear superposition of them. 
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3. The wave functions with the mixed asymptotic conditions 

 

Let us consider a wave processes involving the both scattering functions:  
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Note, that in accordance with Eq. (17) it can be written  

( , ) ( , ) ( , )left x k x k i x k     , ( , ) ( , ) ( , )right x k x k i x k     .                 (18) 

 Using Eq. (15) and Eq. (16) one can check that the both functions  ( , ), ( , )x k x k    are 

normalized and orthogonal with respect to each other: 
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 Like to the functions ( , )left x k , ( , )right x k  any wave process can be presented with help pf 

the functions ( , ), ( , )x k x k   ; 

 
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where ( )v k , ( )v k  are the coefficients (the functions or the densities)  of the expansion spectrum of 

the function ( , )x t conducted on the basis of the functions ( , ), ( , )x k x k   .Using Eq.(19) from Eq. 

(20)for ( )leftv k , ( )rightv k one can write  
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These formulas present the dependences of the spectral compositions of the wave ( , ), ( , )x k x k    

on initial from of a wave packet perturbation.As we will see below the presentation of the wave 

packet in the form of Eq. (20)  is very useful for description of the resonance tunneling cases and a 

transmission trough a symmetric potential.  

Note if  ( ) ( )v k v k  , when the wave packet Eq. (20) includes the left scattering functions 

only  (see Eq. (18)); 

0

( , ) 2 ( ) ( , ) exp{ ( ) / }leftx t v k x k iE k t dk


    .                              (22) 

In the case when ( ) ( )v k v k  , ( ) ( )v k v k    the wave packet Eq. (20) will include the right 

scattering functions only; 
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0
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It should be mentioned as well that the wave functions ( , ), ( , )x k x k    define a full set of 

functions for description of any wave process propagating in a field of potential form of Eq. (8); 

* *
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Taking into account Eq. (17) and the asymptotic forms of the functions ( , )left x k , ( , )right x k  

(see Eq. (11), Eq. (12) and the first equality of Eq. (14)) let us write the asymptotic behaviors of the 

functions ( , ), ( , )x k x k   ;  
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(26) 

As it is seen form Eq. (25) for the both asymptotes of the wave ( , )x k  there are both reflected and 

transmitted waves.   

For the case of a symmetric potential, when as it is known the equality  

( ) ( )R k P k                                                                (27) 

takes place (see[20]), it is easy to see that ( , ), ( , )x k x k    Eq. (25),  Eq. (26) are even and odd  

functions, correspondingly;  

( , ) ( , ) ( , )oddx k x k x k      , ( , ) ( , ) ( , )evenx k x k x k       .                  (28) 

 From the theoretical and practical points of views it is interesting to consider the asymptotic 

behaviors of the functions ( , ), ( , )x k x k    in the case of the so-called resonance tunneling when 

transmission through a scattering potential takes place with unit probability. So, for the resonance 

tunneling case the reflection coefficients of the both scattering problems equal to zero:

* *( ) ( ) ( ) ( ) 0R k R k P k P k  . Denoting the magnitudes of k  corresponding to the cases of the 

resonance tunneling as nk  one can write:  

( ) 0nR k  .                                                           (29) 
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This equation is a transcendental one defining the magnitudes of  nk .  Since for the magnitudes of 

nk k  the module of the transmission coefficient equals to unity *( ) ( ) 1T k T k  ,  so one can write  

( ) exp{ ( )}n nT k i k ,                                               (30) 

where ( ) ( ) exp{ ( )}T k k i k  , ( )k  and ( )k  is are the module and the phase of transmission 

amplitude: ( ) 1nk  .  

Using Eq. (29) and Eq. (30) for the asymptotic behavior of the functions ( , )odd x k , 

( , )even x k  Eq. (28) one can get: 
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(32) 

where we denoted ( )n nk  .  As one can see from Eq. (31), Eq. (32)for an arbitrary potential, 

when the resonance tunneling case takes place the mixed asymptotic behaviors  take even and odd 

forms.      

 

4. The wave packet contracted on a base of the even and odd scattering functions 

 Further we will investigate the wave packets with a spectral composition contained the wave 

functions with magnitudes of k  near to the resonance. Let us introduce for the functions 

( , ), ( , )x k x k    the same ( ( ) ( ) ( ))v k v k v k   and a uniform spectral distribution into a small 

interval around the resonance values nk . Denoting the distribution ( )v k  as ( )nv k  and taking into 

account thatthe equality (see Eq. (7)) 
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In general case the functions ( , ), ( , )x k x k    corresponding to the interval 

n nk k k k k      (see Eq. (34)) do not have a certain symmetry. However due to a smallness of 
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k  we will suppose that  ( , ), ( , )x k x k   by the character of the space dependence are very close 

to the functions corresponded to the central value of the interval, i.e. nk k . Note, that the wave 

functions corresponding to the values of resonance tunneling nk   have a certain symmetry in 

asymptotes (see Eq. (31), Eq. (32)). So, in accordance with the above mentioned, for the values of k

located in the mentioned region the wave functions ( , ), ( , )x k x k    can be considered  
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Here the index n  shows these functions are considered when k  is near to nk .  

Below we will consider the wave processes constructed on a base of the wave functions of 

the mixed asymptotesEq. (25), Eq. (26) with values of k  near to nk  (see Eq. (36), (37)); 

0

( , ) ( ) ( , ) exp{ ( ) / } .n nx t v k x k iE k t dk

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(38) 
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n odd evenx k x k x k    .                                                (39) 

One can separately consider the wave processes with odd and even asymptotic behaviors;  

( , ) ( , ) ( , )odd evenx t x t x t    ,                                              (40) 

where 

0
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

    .                              (42) 

 Forthe functions ( )E k  we against use a smallness of the k  change interval; 

2 2 2

( ) ( )
2

n n
n

k k
E k k k

m m
  
 

,                                                (43) 

wherein the second term 2 / ( ) /n nk m dE k dk is a magnitude of the derivation of ( )E k in the point. 

Denoting nk k q  and taking into account Eq. (43)for the considered wave processes (see Eq. (38)) 

one can write: 
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 exp{ }
( , ) ( , ) exp

2

kph
grn n

n n n

k

ik u t
x t x k q iqu t dq

k







   

  ,                      (44) 

where ph
nu , gr

nu  are the phase and group velocities taken when nk k : 

2
ph n
n

k
u

m



, gr n
n

k
u

m



.                                                               (45) 

Further we will use for the velocities ph
nu , gr

nu  the notations  

ph
n phu u , gr

n gru u ,                                                                  (46) 

when these quantities are rewritten without the explicit mentioning of the index n . 

 Below we investigate how a wave process is changed in time when a space coordinate x  

tends to  , i.e. we consider the behavior of ( , )x t   . So, in accordance with Eq.(36) and 

Eq.(44) for the case of the wave process of the odd asymptote one can write: 

 exp{ / 2}
( , ) exp{ } cos ( ) exp

22 2

k
n n

odd n ph n gr

k

i
x t ik u t k q x iqu t dq

k

 






            ,      (47) 

 exp{ / 2}
( , ) exp{ } cos ( ) exp

22 2

k
n n

odd n ph n gr

k

i
x t ik u t k q x iqu t dq

k

 






            .     (48) 

Using Eq. (37) and Eq.(44) for the wave process of the even asymptote one get: 

 exp{ / 2}
( , ) exp{ } sin ( ) exp

22 2

k
n n

even n ph n gr

k

i
x t ik u t k q x iqu t dq

k

 






             ,          (49) 

 exp{ / 2}
( , ) exp{ } sin ( ) exp

22 2

k
n n

even n ph n gr

k

i
x t ik u t k q x iqu t dq

k

 






              .        (50) 

 The obtained integrals Eq. (47) - Eq. (50) are very easily calculated. So for the odd 

asymptote process one can get: 
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(51) 
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
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(52) 
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It is known that:  

 sin ( )
lim ( )

( )
gr

grk
gr

k x u t
x u t

x u t


 

 
 


,                                            (53) 

and for finite values of k the main maximums of these functions correspond to the condition  

0grx u t  . Denoting grx u t a   ii is easy to see are essentially differ from zero; 

 sin ( )
lim 0

( )
gr

a
gr

k x u t

x u t

 



.                                                        (54) 

In accordance with Eq.(53), Eq. (54) in Eq. (51) the second term will differ from zero (note 

that in this case x  takes negative values and t  is positive always). It is clear that for Eq. (52) the 

first term will differ from x  (note that here x  takes positive values). On a base of the above 

mentioned for the wave function of the odd asymptotic one can write: 

 
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sin ( )
exp{ ( )}, ,
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2 2 sin ( )
exp{ ( )}, .

( )
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n ph
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
  
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                       

(55) 

It is interesting to note that for the both asymptotes the group and phase velocities have different 

directions. 

For the wave process constructed on a base of the wave functions of the even asymptote 

from Eq. (49), Eq. (50) 
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( )

gr

even n ph n
gr

gr

n ph
gr

k x u t
x t i ik x u t i

x u tk

k x u t
i ik x u t

x u t




  
       
  

 
 
                   

(56) 
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(57) 

Taking into account Eq. (53), Eq.(54) for the given wave process it takes place: 
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 
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sin ( )
exp{ ( )}, ,

( )
( , )

2 2 sin ( )
exp{ ( )}, .

( )
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n ph
gr

even
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n ph
gr

k x u t
ik x u t x

x u ti
x t

k k x u t
ik x u t x

x u t



  
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
  

  
    

 (58) 

 Comparing Eq. (55) with Eq. (58)it is seen that the functions ( , )odd x t , ( , )even x t

corresponding to the wave functions with different parity of asymptotes up to a phase factor equal to 
each other; 

 ( , ) ( , )even oddx t i x t   . (59) 

This result means that the wave processes coincide: 
2 2

( , ) ( , )even oddx t x t   . If the concept of 

degeneracy is generally applicable to wave packets, when one can states that in this case there are no 

two wave processes and one wave process is possible to generateonly. It is also seen that the time of 

the wave process full out coming from a potential region are defined by it space size and the group 

velocity.     

Conclusion  

In the framework of the given work we discuss a wave process evolution presenting a wave 

packet constructed on a base of linear combinations of the wave functions corresponding to the left 

and right scattering problems. These wave functions have asymptotes of the mixed form, when on 

the both sides of a potential there are waves propagating in negative and positive directions. It was 

shown that for a case of a symmetric potential and the resonance tunneling cases the asymptotes of 

the given functions have certain parity: 

 We show that the asymptotic behaviors of the wave packets constructed on a base of the 

even asymptotic functions and on a base of the odd asymptotic functions coincide. It allows us to 

suggest that the bound states can be considered as a product of a wave packet evolution. 

Appendix I. 

 
The well-known formula (3) is usually obtained by an operation way, however from a 

methodology point of view it is interesting reproduce this result on a base of the finite-deference 

methods laying in the origin of solution methods of differential equations. Writing in Eq. (1) 

 ( , ) / ( , ) ( , ) /x t t x t t x t t        a wave function magnitude at at ime moment t n t   can 

be presented as: 
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   

             

(I.1) 

where n
mC  is the well-known binomial coefficients:  

!

( )! !
n
m

n
C

n m m



. 

Note that if t n t   is a finite quantity, when n it is followed that 0t  .Taking in 
Eq. (I.1)  /t t n   one can write: 

2 3

31 2
2 3

ˆ ˆ ˆ ˆ
( , ) 1 ( ,0)

n
n nn n

n
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C CC CH H H H
x t t t t t x

n i n i n i n i
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                    


   

.           (I.2) 

It is easy to check, that  
1

lim
!

n
m
mn

C

n m
 .      (I.3) 

Taking into account (I.3) and considering in Eq. (I.2) n   and one can get Eq. (3). 
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